blueprism

Code Stages

Developer Guide

Document Revision 1.0

Code Stages - Developer Guide

®
b I U e p rl S m Trademarks and copyright

Trademarks and copyright

The descriptions and screenshots contained in this document are licensed under the Creative Commons Attribution-ShareAlike
(CC-BY-SA) 3.0 license https://creativecommons.org/licenses/by-sa/3.0/.

© Blue Prism Limited, 2001 — 2021

®“Blue Prism”, the “Blue Prism” logo and Prism device are either trademarks or registered trademarks of Blue Prism Limited and
its affiliates. All Rights Reserved

All trademarks are hereby acknowledged and are used to the benefit of their respective owners.
Blue Prism is not responsible for the content of external websites referenced by this document.

Blue Prism Limited, 2 Cinnamon Park, Crab Lane, Warrington, WA2 0XP, United Kingdom
Registered in England: Reg. No. 4260035. Tel: +44 870 879 3000. Web: www.blueprism.com

Commercial in Confidence Page ii

https://creativecommons.org/licenses/by-sa/3.0/
file:///C:/Users/adutton/Documents/Rebranding/Templates/www.blueprism.com

Code Stages - Developer Guide

blueprism Contents

Contents
11 To [8T 1 o] o OSSOSO 2
L0111 1= T [1= SRS 3
ST 111 T = SRS 4
I = 0 [S 5
Create the BUSINESS ODJECT.......oo e sa e s s s e s e e e e e e e e e e nenne s e nne s 6
F o Lo T To IR g TSI @ oo [T =T = SRS 10
EXECULING OUI COOE STAGEc ettt e e e e s s sa e neese e s e s e n e e eneenenneenennennens 14
7= o1 To o = OSSR 14
7= oTUTo B o TU L] SRS 15
D= 0 10 o RS 1 =] o 1SS 15
=T 018 o RS 1= o X O XY= oS 15
=T 018 o RS 1= o 1 1| SO 15
1= 0 8T == S 15
Code Stage 2 — Something a little MOre USEfUL ... 16
(€0 aTo TN T [1 0T SO 21
AT 0T TS T] o) SO 21
USING IFONPYENON ...ttt b e e e e e e e s e aens e s e e e e e e e e naeeneeneneennan 27
[roN PYthon BUSINESS ACHION.c.iiuiieeieseeie ettt sesa e s e s e e e e e e e e e nnennenan 28
01T =T | B T o) S 29
@70 o 11 o) o SR 32

Commercial in Confidence Page iii

Code Stages - Developer Guide

blueprism Contents

Figures

FIigure 1 Create ODJECT. e e e s s ne e s e e e en e e e e e e e nennennenan 6
Figure 2 Name the BUSINESS ODJECT......ccui ittt e e e s e e s e s e e n e e e e nneeneenes 6
Figure 3 BUSINESS ODJECt DESCIIPLION......ciciieeerirereeete s r e sn e e nennenas 6
Figure 4 BusiNness ObJECE Created..... ..ottt er et s et se et s e e s e e s a e et e s e sae et e ereeaeennesneenes 7
Figure 5 Business Object INItialize PAge. ..o 7
Figure 6 BUSINESS ObJECE ProPEIti€S.....ccuicuiiieeieceee ettt ee ettt ea e e e s a e et e e e sne e s e e re e e e nneeneenes 8
oW €1o] o =1 @7 oo [T Ir- | o J PSSR 8
Figure 8 RENAMING the ACHION......ci ettt s a e sae e s ae e s e e e e e e ee e sennsennsenennenas 10
Figure 9 ReNAmMING the ACHIONottt s ra e e ae e sae e ae e s e e e e e eee e sennseansenennenas 10
Figure 10 Code Stage Output Parameter...........co i nnennen 11
o T =T I B O 0T L=l = T = S 11
Figure 12 Data ltems to be used for Parameter ValUEs ... 11
Figure 13 Code Stage INPUt ParameEters........o ettt e n e e enean 12
Figure 14 Code Stage Parameters iN USEccoccoerireriinieseeieeeeee et snennen 12
Figure 15 Parameters With VAIUES ...ttt s e sa e s s n e e eenneen 12
Figure 16 Parameters With VAIUES ...ttt s n e e n e ae e e e nneen 13
Figure 17 Stage ParameEters..... ... s a e s s b e s e e e e e e neeneenennennen 13
FIQUIre 18 SEt NEXE STAGE......ec et e ettt se e b et e s ae e ae et e saeeaeeaseeaeesessesaeenseeaennesnennean 14
Figure 19 Debugging CONTIOIS.......coiiiiiieieeieirese s sm e sae s ss e s e s e e e e e e enesneenennennens 14
Figure 20 DEDUQG SPEEd........ooiiieeecieeee ettt ettt et et et e st et e e be st e saeeaeeaeesaeeaeesseeaeesesseeanenseeaeesesnenaean 15
FIigure 21 Create NEW PAgE ...t e e s sesse b e s e e e e e e nesneenennennen 16
FIQUre 22 NamE OUI NEW PAJE.....uuiirruerrieeiereiereisresseasseesseesseeseesssessesasesssesssssssesssssssesssesssessssesssesssesssesssesssessssesas 16
Figure 23 The FIDONACCH COUE........couiiiiiiieieeirireete sttt s e st e s e s e e e e eneeneenennennens 17
Figure 24 ArrayToDataTable Conversion Method ..o 17
FIigure 25 The COAE STAgEccciiririririesie sttt e ettt s ae s aesse st e e e e et e e eneesenaensnnsens 17
Figure 26 Code Stage Parameters...... ...t nennennen 18
Figure 27 Code Stage Parameters ...ttt sttt nne e 18
FIQUIE 28 STAI ...t s e e s e e e e e e e e e e e aeeResaeeRees e s e n e s e e et eneeneenennennens 18
FIGQUIE 29 EXECULE ...ttt ettt st st d e st e e e be st e e e e ae et e saeeaeeneesae et e nbesaeenaeeneeeesneenean 19
FIQUIE 30 RESUILS ...ttt et a e s e e e e e e e e e ne s aeeReee e b e m e e e e et eneeneenennennen 19
Figure 31 Fibonacci Series Collection Data e ... 20
Figure 32 Blue Prism File IMPOIrt IMENU ..ottt sttt e e 21
Figure 33 Blue Prism IMpPort File Di@logccccoeerirereiesieeeereee e ss s s sne e 22
Figure 34 Locate the Utility ENVironment VBO ASSElccoiiriiririnesesesee et 22
Figure 35 BIUE PriSm TOOIDOXcc.ciiriiiieiieietrerie sttt s sn et ns e e enennennen 23
Figure 36 Action Stage INpUt Parameters ...t 24
Figure 37 Fibonacci Series PYthON SCript........co o 24
Figure 38 File Management Utility Read Lines from File — Input and Output Parametersc.ccccecenuecne 25
Figure 39 File Management Utility Read Lines from File — Input and Output Parameterscccccecenuncne 25
Figure 40 Our Python SCript ACHION ...ttt ne s e 26
Figure 41 Start Parameters for the ACHION. ... 26
Figure 42 Launching the Developer Command Prompt as Administrator..........c.ccocverinerreeneniceeresenenens 27
Figure 43 Code Options for the Iron Python References..........oo s 28
Figure 44 The IrONPYLNON ACHON ..ot e e e e nennennen 29
Figure 45 The [ronPython Code STAQEceruiirieirierieerie et s e e e nneneas 29
Figure 46 Start Process — Executing a Powershell SCript.......ccoc o 30
Figure 47 Read File — INPUL PArameEters ..ottt n e ae e n e nneeen 30
Figure 48 Read File — OULPUL Parameters...... ...t 30
Figure 49 The POWEISNEIl ACHON ...ttt s e e e e e e e seenseansennnnenns 31

Commercial in Confidence Page iv

Code Stages - Developer Guide

bl Ueprlsrﬁ Introduction

Introduction

Blue Prism has many tools to create automations between systems. It is sometimes necessary to leap
beyond the provided tools and perform an action that is totally customised. Perhaps a customer has a
legacy application that is too costly to replace or perhaps the knowledge that created it has now left the
company. There are many reasons why a code stage could be useful. The main one being, to do
something that you just cannot accomplish using the standard Blue Prism tools.

Commercial in Confidence Page 2 of 32

Code Stages - Developer Guide

bl Ueprlsrﬁ Knowledge

Knowledge

There is always a cost to using a flexible tool such as a code stage. This being knowledge of .NET
development. Code stages allow code to be written in Visual Basic.NET, C# and Visual J#. We will focus
on C# in this document.

Now, if you are looking to do something more complex than perhaps a simple calculation, you may need
to learn more about VB.NET or C#. That is beyond the scope of this paper but there are plenty of
resources around to assist with this.

On the other hand, if you are a .Net coding veteran, this should be quite enjoyable for you. There are a
few things to be aware of, particularly in the area of how the code elements are arranged. Blue Prism
also provides a development paradigm called single-responsibility out of the box. Uncle Bob would be so
pleased.

Commercial in Confidence Page 3 of 32

Code Stages - Developer Guide

b I U e p rl S m Solution Files

Solution Files

This file can be found on our Blue Prism Github repository at https://github.com/blue-prism/Code-Stage-
Training.
To use this asset, import the bprelease file named Blue Prism DX — Code Stage The repository contains

all the files we refer to in this paper and provide a working example of code stages and how to get the
most out of them.

Commercial in Confidence Page 4 of 32

https://github.com/blue-prism/Code-Stage-Training
https://github.com/blue-prism/Code-Stage-Training

® Code Stages - Developer Guide
blueprism

The Project

The Project

We are going to build an object that will perform several tasks:

1.

2.

Add together 2 numbers. This will initially be pre-set values in the .net code but we will expand
this out to include parameters.

Call a separate routine to undertake a single task of returning us a set of Fibonacci numbers. We
will take those numbers and produce a Blue Prism Collection.

Finally, we will look at calling both Python and PowerShell scripts from a code stage.

Commercial in Confidence Page 5 of 32

Code Stages - Developer Guide

®
b I U e p rl S m Create the Business Object

Create the Business Object

We are going to create a business object, that will sit under the default node of the objects tree. To do
this, right-click on the objects node and choose Create Object.

B Blue Prism - Robotic Pracess Automation Software
Home Studio Control

Studio Create ¢
ﬁ - [&] Processes Objects
9.@ Default (Defauit)
. : - TEST - Salesforce APl Calls
M : E|@ Access Deprovisioning Processes
b | [Multi Part Form Test
a4
= S | '] Create Object N |
= Delete Object s
Create Group
I I Rename Group
s Delete Group
i‘v‘»a B= Expand Al
B= Collapse Al
\\\ Access Rights
- Show all unrestricted groups

Figure 1 Create Object

When the dialog appears, enter a name for your new business object as we have done below.

& New Business Object

Start work on a new business object

Enter a name for the business object

Blue Prism - Code Stage Example

Figure 2 Name the Business Object
The next dialog will present you with the option of a more detailed description of your business object.

Its up to you, but right now, we will leave this empty.

& New Business Object

Start work on a new business object

Enter g description of the business abject

Figure 3 Business Object Description

Commercial in Confidence Page 6 of 32

® Code Stages - Developer Guide
b I U e p rl S m Create the Business Object

The next click of the mouse and we have our business object created and it will show up in the studio list.

- [&) Processes

@ Default (Defauit)

: ---@ Access Deprovisioning Processes
= {8 Objects

@y Default (Default)
& Blueprism Sharepoint Object

..... G£

Figure 4 Business Object Created

Now the creation part is done, lets get on with making our object do something for us. Double click it and
maximize the window.

| & Initialise & CleanUp Action 1

Blue Prism - Code Stage Example

Created by admin at 12/5/2019 &14:56
Last changed by admin at 12/5/2019 21

Initizlise Page |

This is an optional page where you might
choose to perform some initialisation tasks after
your business object is loaded.

|
| The initialise action will be called automatically

immediately after loading your business object | —— —_—
{ 3\

| You will not be able to call this sction from 2
business process. nor will it be called atany |
| other time than after the creation of the object

Figure 5 Business Object Initialize Page

So, this is the initialize page, the first thing we need to do when working with code stages is to decide our
coding language. So, the area in ellipse, double click it and we will see how we select that.

Commercial in Confidence Page 7 of 32

Code Stages - Developer Guide

®
b I U e p rl S m Create the Business Object

External References Browse
System.dil

System Data dll
System Xml dll

System.Drawing dil

Remave

Namespace Imports
System
System.Drawing

System.Data

Remove

Language: |C# h

Figure 6 Business Object Properties

So, here we have 2 tabs that are of immediate interest to us. The one shown, Code Options, allows us to
select our choice of .net language. These are Visual Basic, C# and Visual J#. For our purposes we will
focus on Visual Basic and C#.

The External References and Namespace Imports are used to include libraries of .NET functions that
exist in other files. Examples of these could be an SQL Server or MySQL database library or perhaps a
library for machine learning. This is where code stages really come into their own. While not every
business object needs one, they are there when you do.

The Global Code tab is exactly that, it’s for code that can called throughout our business object. The
benefit to this is only having a single area to update when things need to change. Rather than writing the
same routine in each code stage, we can take advantage of this feature, reduce the amount of
programming code we write and benefit from easier maintenance.

Conditions Information Global Code Code Options
1

Check Code

Figure 7 Global Code Tab

Commercial in Confidence Page 8 of 32

Code Stages - Developer Guide

®
b I U e p rl S m Create the Business Object

As you can see, there is no global code right now. In a little while we will revisit this window and populate
it with some code.

Commercial in Confidence Page 9 of 32

Code Stages - Developer Guide

b I U e p rl S rﬁ Adding the Code Stage

Adding the Code Stage

So, we have 3 tabs on view in our object. These are the Initialise, Clean Up and for now, Action 1. Now
any work that goes on in the Initialize tab, executes when the object is first created, so any set up should
be done here. Likewise, in the interest of being tidy scouts and guides, we should leave the campsite
better than when we arrived, so in the clean up we put any necessary tear down code. This will allow
resources to be released and reduce the chance of memory leaks and other hard to find problems.
Seasoned programmers might liken these stages to constructors and destructors.

To make our page more professional, we are going to rename the page and call it Add Numbers. This
helps when the object is published and is available to be used by our (or others) processes. To do this
we right-click the mouse on the Action 1 tab and choose Rename from the drop down.

& Object Studio - Edit - Blue Prism - Code Stage Example - [COMPLETED] — m} X
File Edit View Tools Debug Help

HE % €~ > - [% Zoom 100% ~ @& G Segoell -0 ~B I Q.-_

| R = | E (0) Errors Launch < Application Modeller | [* &2 g E | Find Text - #% 2% Dependencies |

Expression: |-| Store In: o
p

=z |z| &% Initialise @ Clean Up Acti
. kBIo:k [New ~

T JRead Duplicate

Blus Prizm - Cods Stzge B)| Rename s Y
[write (s)
— Delet:
| Navigate x ete
Eﬂ Code % Cut

Em Copy
=
) Wait Paste
I:l Process)
Publish
[JPage Find References
[] Action
<> Decision
% Choice
[Calculation
{2 Multi Calc
/7 Data ltem ()
L Callection
[toop
I:"‘ MNote
O Anchor

(__JEnd < >

Manage Pages

12/5/2019 10:46:24 AM END: "End’ Process: ‘Blue Prism - Code Stage Example’ Subsheet: “Action 1°

Figure 8 Renaming the Action

B Rename Page X

Enter a new name for the page. References to this page will also
be renamed accordingly.

|Add Numbers|

| 0K || Cancel |

Figure 9 Renaming the Action

Ouir first task is to simply add together 2 numbers, using a code stage. Now, this is not something to use
a code stage for. The reason being that this can be accomplished far easier using a Blue Prism
calculation stage. In order to get a value from our code, we are going to create an output parameter. This
will create a variable inside the code stage for us to put the result of our calculation into. Note the name
Result as it will be seen how this is used in the code pane.

Commercial in Confidence Page 10 of 32

Code Stages - Developer Guide

b I U e p rl S rﬁ Adding the Code Stage

Inputs Outputs Code

Name Data Type Store In

Number 4

Figure 10 Code Stage Output Parameter

We have our code stage and we now have something for it to do.

Inputs Outputs Code:

Out:Result - System Decimal

Figure 11 Code Pane
So, the output parameter we created earlier is visible on the parameters list on the right of the image.

Note, that we created this parameter as Blue Prism type number. This is translated into .net as
a decimal.

Now when this code stage executes, the result of 5 will be put into our Result data item.

As you can see from the above, the values 2+3 are what we call hard-coded. This is great if we always
want the result of 5. If we need another value, then we need to alter our code. This resultantly then
means our code is high maintenance. It also has zero reusability as it would likely need to be changed
every single time. So, lets solve this. Let’s use some parameters.

We are going to add input parameters to our code stage and then take that a little further with
parameters for our whole action which will then reduce the maintenance needed on our code and
increase its reusability.

So, for our parameters, we need to create 2 data items of type number. We will call them Value1 and
Value2, so not much imagination needed there.

Blue Prism - Code Stage Exampls - Add Number '
A very simple code stage that adds togsther 2 \ Start _.'
numbers. —

Input Parameters

walugl

/ veluez

[Output Parameters \.. End .-'I

Figure 12 Data Items to be used for Parameter Values

So, now we have our data items, we can use them in our code stage.

Commercial in Confidence Page 11 of 32

® Code Stages - Developer Guide
blueprism

Adding the Code Stage

.‘ Code Properties

MName: AddNumbers

Description: Add 2 numbers together and retum the result.

Inputs Qutputs Code

MName Diata Type Value
First\zlue Mumber [Valuel]
~ [Value2]

Figure 13 Code Stage Input Parameters

Now we can review our original code in our code stage and replace the number values with our newly
created parameters.

Code Properties

Mame: AddNumbers

Description: Add 2 numbers together and retum the resuft.

Inputs Outputs Code Parameters

1 Result = FirstValue + SecondValue: In:FirstValue - System.Decimal

In:SecondValue - System Decimal
Out:Result - System Decimal

Figure 14 Code Stage Parameters in use

We can now, modify the values of our data items and those values will then be passed into our code
stage. The benefit here is that it is easier to change the values of the data items than it is to change the
actual code in the code stage. So, if we set the initial value, by double-clicking the data item and place a

numeric value into the Initial Value field of our data items as shown below, we can predict what the result
will be, but at the same time, it’s easier to maintain.

| & Data Properties

Mame:

Description:

DetTie [umbe v [
| - Number items are used to
| {Initial Value |5) | store numeric values.
| I For example, this may be an
| Brposure None ¥ account balance or the value
| of @ menthly payment.
Current Value |5 |
| Misibility Hide from other pages in the process
| Initizlisation Reset to Initial Value whenever this page runs

Cancl

Figure 15 Parameters with values

Commercial in Confidence Page 12 of 32

Code Stages - Developer Guide

b I U e p rl S rﬁ Adding the Code Stage

Input Parameters

/5

[Output Parameters

Figure 16 Parameters with values

We have made this action almost maintenance free and at the same time increased its usability. We can
now take this a stage further by creating input parameters for the whole action. This is done by double-
clicking on the Start stage.

& Start Properties

Inputs

Name Description Data Type Store In
Waluel Mumber Waluel
[7]

Figure 17 Stage Parameters

As you can see, the stage when it is called now from a process, will have 2 input values. These values will
be stored in the data items we created. At this point, we have reached maximum reusability for our stage
and minimum maintenance. This has been accomplished through the use of parameters, which allow
different values to be passed in without having to change anything.

Commercial in Confidence Page 13 of 32

Code Stages - Developer Guide
Executing Our Code Stage

blueprism

Executing Our Code Stage

We need to have a starting position so we might test our business object. So, right-click the mouse on
the start stage of the object on our Add Numbers page. Select Set Next Stage.

® Object Studio - Edit - Blue Prism - Cade Stage Example - o X
File Edit View Tools Debug Help
HE | XEB E&-c-[%Zom 100% - @ Q Segoell -0 -8B I UN-
» -1l %2 (= %= 2 |E Erors | Launch 3 Application Modeller | [» &2 g 2 - Find Text ~ % &% Dependencies
I3 Pointer Expression: | El] storemm: [&
— Link
T [*] & Initialise | & CleanUp Add Numbers | Fibonacci Series | Python Seript | IronPythan Script | Powershell
|, Block "
1 |Read Blus Prism - Code Stage Example - Add Number 'S
2 A le cod that adds together 2 1 Start
Dwe Ay oo s a1 =
7 [Mavigate Return to page reference
[code - View action in Object Studio
0 wait Return to referring Action Stage
A Return to stage that caused exception
[TlProcess { pddNumbe] . 4 :
H View Process
[_|Page Input Paramatars Full Screen
[Action /e /
; iy cut
<> Decision L
+ Copy
< Chotce Sz] Pase
() Calculation / / Delete
{2 Multi Cale - —
/7 Data ltem | End
L [Output Parameters _ Breakpoint
& Collection Set Breakpoint Condition ..
[Loop Run to this stage
[Nate Set Next Stage
© Ancher Enable Calculation Zoom | |v
= < >
(_JEnd Properties

ol

I Autosave backup

Figure 18 Set Next Stage

This will set the colour of the Start stage and we can now use our controls to execute our code stage.

B Object Studic - Edit - Blue Prism
File Edit View Tools Deb
O-2-[3
)EL (0) Er

- Link [+] & intialise
1, Block mrrrn

Figure 19 Debugging Controls
The controls shown above, from left to right are:

e Play (Run) * -
« Pause "

« Step =

e Step Over =
+ Step Out =
 Reset =

Debug: Play

There is some additional functionality to the Play (Run) button. You may see that is has a small downward
pointing triangle on it and if this is clicked you will see the following:

Commercial in Confidence Page 14 of 32

Code Stages - Developer Guide

b I U e p rl S m Executing Our Code Stage

Debug Speed
Fast

» Normal

% Slow

Figure 20 Debug Speed

It is possible to debug at another speed, whether that be fast or slow, it aids debugging as it allows you to
speed up the running of your objects actions, over areas you are confident are working correctly. Now,
something to be aware of, there is no debugging or stepping through the actual code you have written at
this time. If you need to debug values of items then it makes sense to use data items and pass them in as
parameters, they can be removed later when everything is working how you expect. We will look at an
example of this later.

Debug: Pause

Exactly as you would expect, this allows a running process to be halted. Clicking on the play button again
resumes execution from the current selected location.

Debug: Step

In order to work through your process, it helps to be able to step through and monitor each stage one at
a time. This button requires a manual click for each stage in the process. Note that any processes that
involve other pages, or object will jump to those stages and you will be able to work your way through
them individually.

Debug: Step Over

Once you have satisfactorily debugged your process, you may not want to keep stepping through it. The
step over button allows a whole stage to be run, without interaction from the user.

Debug: Step Out

If you are in a stage and want to move back to the calling routing, you can click on step out and the
remaining steps will be executed, and you will be returned to the step following the one you just entered.

Debug: Reset

This resets the state of any business object or stage. This can also be used to refresh changes in other
parts of Blue Prism. However, changes made to web API objects will require the object to be saved and
reloaded. This was the case to version 6.5.

Commercial in Confidence Page 15 of 32

Code Stages - Developer Guide

®
b I U e p rl S m Code Stage 2 — Something a little more useful

Code Stage 2 — Something a little more useful

Our previous code stage was not really very useful for anything beyond demonstrating the environment
and how the various tools are used.

So, lets do something a little more interesting, lets calculate the Fibonacci series between 0 and 50 and
let’s put them into a Blue Prism Collection. So, we have 2 things to do here, build the series of numbers
and then format their output. We can use the same object as before, but we will add a new page this will
appear as a new function of our business object when we get to using it in a process.

P Object Studio - Edit - Blue Prism - Code Stage Example

File Edit View Tools Debug Help

HZ - - [Zoom 100% - & G Segoell - 10
[5= [Z ez 3 ||[El (0 Errors | [fLaunch < Application Modeller | [* 2 fo |
Expression:

— Link
=P=ln ~| & Initialise G Clean Up Add Numbacs
|, Block New
T Duplicate
J_ |Read

i Rename
Derte
— . X Delete
L Navigate [Blue Prism - Code Stage Exam)
‘}6 Cut

E:EICode

- By Copy

) Wait

- Paste

Process

El Publish

~._|P
[JPage Find References

Action |

l;l / Manage Pages
<__» Decision Result
.2 Choice

Figure 21 Create New Page

As this is a slightly more complex page, its worth discussing how is it best to write code stages. If your
code stage is just a few lines and its code you are familiar with, then go ahead just write it into the Blue
Prism code stage. If, however, the code is long, refers to other methods, it just might be worth making
use of VS Code or even Visual Studio itself. The reason for this is that, Visual Studio is an excellent
development environment and has all the tools you could possibly ever need for software development.
The main benefit to using it here though lies in the fact that you can test the logic of your code before
you move it to Blue Prism. This way you know your code works and all you then must do is make it work
inside of Blue Prism.

So, lets create our new page

B tame new page X

Enter a name for the page.

|Fibonacci Serieg|

0K Cancel

Figure 22 Name our new page

Now, for this code stage, we are going to use a global code item, or method. Our method is going to do
the Fibonacci heavy lifting for us, but because this function is iterative, it needs to be called repeatedly.
Iterative coding can be complex, but it can also be very efficient.

So, we are going to take a quick jump back to our Initialize page and look at the properties of our object,
we will write the code in the global code window.

Commercial in Confidence Page 16 of 32

Code Stages - Developer Guide

®
b I U e p rl S m Code Stage 2 — Something a little more useful

Condttions Information Global Code Code Options

1 public int Fibonacci (decimal n)
5 i

3 int a =

4 int b = 1

=

[for (imt 1 = 0 i < m; i++)
- .

8 int temp = a;

g a = b;

10 b = temp - b;

11]

1z return a;

13

14

Figure 23 The Fibonacci Code

Now this code is fine for generating the Fibonacci sequence and it also demonstrates another nice
concept. That of single responsibility.

NOTE: Single responsibility is the ‘S’ in SOLID. For more information search for SOLID and the
name Robert Martin (Uncle Bob). The benefit this provides is that this code does one thing and
one thing only.

It would have been easy to add in the code to convert the array but that is better if it’s in its own method
too. So, here is our code to convert the array into a datatable. The datatable being the complimentary
data type to a Blue Prism collection. By having the 2 methods separate, it is easier to maintain, after all,
you might not want to always place your Fibonacci values into a collection. You might have other plans
for that data.

15 public DataTable ArrayToDataTable(int[] array)

16 {

17 DataTable dt = new DataTable () :;

18 dt.Columns . add ("Value", typeof (decimal)):;
13

20 for (int i = 0 ;i < array.Length; i++)
21 {

22 DataRow row = dt.NewRow():

23

24 row[(0] = array[i]:

25 dt .Rows. hdd (row) ;

26 }

27

28 return dt;

29

Figure 24 ArrayToDataTable Conversion Method

So, now we have our two global methods, we now need to return to our coding stage and make use of
them.

Code Properties ? - O *

Name: Generate Fibonacci

Description:

Inputs Outputs Code Parameters
1 int[] fib=new int[(int)NumberOfValues]: In:NumberOfValues - System.Decimal
2 Qut:FibonacciValues - System.Data.Data Table
B for (int i = 0; i < NumberCfValues ; i++)
4 {
5 fib[i]= Fibonacci(i):
[
7
8 FibonacciValues = ArrayToDataTable (fib);

Figure 25 The Code Stage

Commercial in Confidence Page 17 of 32

bl ® Code Stages - Developer Guide
U e p rl S m Code Stage 2 — Something a little more useful

So, as you can see, we are preparing an integer array, and building a Fibonacci series using the value
held in the NumberOfValues data item. This parameter is created in the same way we created it in Add
Numbers. You can also see that we have an output parameter declared, called FibonnaciValues. As you
can see in the parameters list on the right of the image above, it is assuming the type of DataTable.

Code Properties ? - O *

Name: Generate Fibonacci

Description:

Inputs Outputs Code Parameters
1 int[] fib=new int][(int)NumberCfValues]: In:NumberOfValues - System.Decimal
2 Qut:FibonacciValues - System.Data.Data Table
B for (int i = 0; i < NumberCfValues ; i++)
4 {
= fik[i]= Fibonacci(i):
[
7
8 FikonacciValues = ArrayToDataTakle (fik):;

Figure 26 Code Stage Parameters

Code Properties

Generate Fibonacci

Inputs Outputs Code

Name Data Type Store In

FibonacciValues Collection FibonacciValues

Figure 27 Code Stage Parameters

It is worth being aware that Number values, are translated to System.Decimal in C#. So, where we have
used NumberOfValues above to define the size of the array, it is necessary to cast this value to an
integer. Our input parameter is defined as a number and our output parameter is defined as a Collection.
This output maps nicely to the datatable that we used in our code. All there is to do now, is run our code
and look at the outputs.

Blue Prism - Code Stage Example - Fibo
Using & code stage. we are creating &
Fibonacci series. This is then used to "

populate 2 Blue Prism Collection.
Start

: Generats

Input Parameters Fibonacci !
NumberOfyvalues
30

[Output Parameters
P —
/ A2)

rd 7
/"r Fibonaccivalues / I \ i _
Empty / / /

/i Iy
'—’f

Figure 28 Start

By right-clicking and choosing Set Next Stage, we can position our code execution point at the start
stage. Note that currently our collection FibonacciValues is still empty. Our NumberOfValues has its initial

Commercial in Confidence Page 18 of 32

blueprism

Code Stages - Developer Guide
Code Stage 2 — Something a little more useful

value set to 30. You can set this to your own value, bearing in mind there will be numerical limits to the
results.

Blue Prism - Code Stage Example - Fibo
Using 2 code stage. we are creating a
Fibonacci series. This is then used to
populate a Blue Prism Cellection.

LI
N)

Input Parameters

MumberOfizlues
30

[Clutput Parameters

Fibonaccivalues
Empty J,"r

Figure 29 Execute

By clicking on the step button we can advance our execution point to our code stage. At the next press
of the step button our code will be executed, and the results will be seen in the FibonacciValues
collection data item.

Blue Prism - Code Stage Example - Fibo
Using a code stage. we are creating a
Fibonacci series. This is then used to

- - —
populzte 2 Blue Prism Collection. ,/ \I
k Start /
| ~m
L 4

T T
i Generate
Input Parameters

i Fibonacci !
MumberOfvslues
En]

Fibonaccivalues

Rnw1of30/ff

Figure 30 Results

Our code has successfully run and returned us the first 30 Fibonacci series. This is verified by examining
the Collection data item FibonacciValues.

Commercial in Confidence Page 19 of 32

b I ® Code Stages - Developer Guide
U e p rl S m Code Stage 2 — Something a little more useful

Collection Properties

FibonacciValues

Fields Initial Walues Current Values

Walue [(Mumber)

Figure 31 Fibonacci Series Collection Data Item

Commercial in Confidence Page 20 of 32

Code Stages - Developer Guide

bluepﬂsrﬁ Going Further

Going Further

So, now we know how to do this with a code stage, what else might we do? How about call a Python or a
Powershell script? What about dynamic languages, can we use Blue Prism there? Let’s look.

The interesting thing here is that to execute either of these script types, we don’t have to use a code
stage. We can make use of the Environment Utility VBO that is supplied with Blue Prism, however if you
really want to use a code stage go ahead and knock yourself out.

Python Scripts

Blue Prism comes complete with a set of VBO’s. While these are installed on your PC when you install
Blue Prism, they won’t be installed in your environment until you specifically do so. One of those VBO'’s is
called Utility — Environment. This asset has a heap of functionality in relation to the windows environment
on the machine which the process is running. A whole host of functionality for managing processes, of
which Start Process is the one we are interested in.

In order to use this VBO asset, its necessary to download the VBO, if you have never done this before
then here we go. From the main control page of Blue Prism, click the file menu and choose import.

’ Blue Prism - Robotic Process Automation Software

New Ctrl+N

Open Ctrl+O
Import Ctrir|
Export i >

Connections

Exit
]

-

Figure 32 Blue Prism File Import Menu

Commercial in Confidence Page 21 of 32

Code Stages - Developer Guide

bluepﬂsrﬁ Going Further

Choose the input file(s)

Choose the input file

“ Browse...

< Back Next > Cancel

Figure 33 Blue Prism Import File Dialog

Click on Browse... and the following file dialog will appear. You will need to navigate to the following
location, if Blue Prism is installed on your C: drive.

C:\Program Files (x86)\Blue Prism Limited\Blue Prism Automate\VBO

& Choose the input file X
<« v 1 « 0OS(C:) > Program Files (x86) > Blue Prism Limited > Blue Prism Automate > VBO v O Search VBO p
Organise v New folder = ™M @
BluePrismDem Name Date modified Type Size o
BPReleases] BPA Object - System - Active Directory XML Document 31KB
Dell || BPA Object - Utility - Collection Manipul... XML Document 181KB
Development J BPA Object - Utility - Date and Time Man... XML Document 51KB
Dri || BPA Object - Utility - Encryption XML Document 15KB
rivers —
| | BPA Object - Utility - Environment XML Document 71KB
GitHub Assets : = i s .
|| BPA Object - Utility - File Management XML Document 144 KB
Info [BPA Object - Utility - Foreground Locker XML Document 24KB
Intel [] BPA Object - Utility - General XML Document 18KB
kworking j BPA Object - Utility - HTTP XML Document 59 KB
PerfLogs J BPA Object - Utility - Image Manipulation XML Document 46 KB
Program Files J BPA Object - Utility - JSON XML Document 24KB
S L] BPA Object - Utilty - Locking XML Document 59 KB
— v || BPA Object - Utility - Network XML Document 12KB v
File name: | BPA Object - Utility - Environment v | Blue Prism Release (*.bprelease, v

Figure 34 Locate the Utility Environment VBO Asset

If you select the Environment VBO, as shown, and click open, the dialog will disappear, and the previous
file import dialog will be exposed. Click next here. You should see a progress bar move across the dialog
and it should display the message that the release has been imported into the database. You may now
click on finish. Repeat this procedure for the Utility — File Management VBO asset. We will use this to
read in our text file.

Commercial in Confidence Page 22 of 32

® Code Stages - Developer Guide
blueprism Going Further

So, now we return to our business object and create the action that will execute our python script. Now,
as we have been working on the Fibonacci series, we will continue with this except this time our series
will be calculated by a Python script and written to a local text file on the hard drive. We will then read in
that text file and populate a Blue Prism collection with the values in that text file. As we are going to call a
python script it will be necessary to have Python installed. This was tested with Python 3.8 which is
available as a Windows installer from https://www.python.org our installation location is non-standard so
you may need to alter pathnames to meet your requirements.

So, as we have done before, create a new page, and ours is called Python Script. Feel free to name
yours however you wish. Add an action stage to our newly created page.

- Link

"1, Block

7 |Read

[write
][Mavigate
[T cCode
) Wait

I:l Process

=

<> Decision
.2 Choice
\'::} Calculation
(b Multi Calc
_"’7 Data [tem
[Collection
Q Loop

D Mote

0 Anchor
(" JEnd
[} Exception
g Recover
[IResume

Figure 35 Blue Prism Toolbox

Set the business object drop down to Utility — Environment and the action to Start Process. Set the input
values appropriate for your system. There are no output parameters for this stage. As you can see we
are using Data Items to carry our parameter values.

Commercial in Confidence Page 23 of 32

https://www.python.org/

blueprism

Code Stages - Developer Guide

Going Further

- Action Properties

MNames ility - Environmenrt::Start Process

Description:

Business Object | Utility - Environment i | 0 Group:

Action |Siart Process

Inputs Outputs — Conditions

[view All items

MName

Application

v| DPage D-ata Type

Data Type Value - Binaries
Text [ProcessToCall] [#- Collections

[SeriptFile] - Dates

[+- Flags

[+~ Numbers
- Passwords
[+ Text

- Times

- TimeSpans

Stage logging: [] Dant log parameters on this stage

\warning threshold: System Default ~ Mumber of minutes 5 = (0 to disable) oK I |

Cancel

Our python script is as follows:

Figure 36 Action Stage Input Parameters

Ilouunmponl3|llnaw2 63|I|na~3IB.IInmu4tB|IInan5 53|I|nanﬁtﬂ.lln

5

nterms = 25
nl,n2 1
count

0
x=open {'C:\Python\Outputs\Fibonacci.txt', 'w')
Swhile count < nterms:
| nth = nl + n2
nl = n2
nZ = nth
| x.write(str(nl)+str(chr(13)))
L count +=1

®x.close()

Figure 37 Fibonacci Series Python Script

This file, Fibonacci.py, can be found at the GitHub site for the accompanying assets for this exercise. The
python script has a path where a file is written to, this may need to be altered for your environment.

The next step is to read in the text file and populate a Blue Prism Collection. We can do this with another
installed VBO. The Utility — File Management will enable us to read in the file contents and process it

however we wish.

So, let’s look at our object now. Here are the settings for the File Management Utility VBO, to read the file

into a Blue Prism Collection.

Commercial in Confidence

Page 24 of 32

® Code Stages - Developer Guide
blueprism

Going Further

- Action Properties ? — O *
Mame:
Business Object | Utility - File Management ~ 0 o
Action |Read Lines From File v| [rage [] bata Type
Inputs Outputs — Conditions [view All items
Name Data Type Value - Binaries
File Path Text [FileToRead] - Collections
Start Line Mumber [StartLine]
- DateTimes
[EndLine] - Flags
[+~ Numbers
- Passwords
(- Text
. Times
- TimeSpans
Stage logging: [] Dant log parameters on this stage
‘wiarning threshold: System Default v Mumber of minutes 5 = (0 to disable) I [o]4 I | Cancel

Figure 38 File Management Ultility Read Lines from File — Input and Output Parameters

Action Properties ? = O X

MName: Lkility - File Management::Read Lines From File

Description:

Business Object |Uh'|ity—Fi|e Management 'l o Group:
Action |F'.ead Lines Fram File Vl [Jrage] Data Type
Inputs Outputs Conditions [view Al ltems
MName Data Type Store In . Binaries
Success Flag Success &)- Collections
Message Text Message
- DateTimes
Lines Collection FibonacciSeries [- Flags
Line Count Mumber Line Count - Images
[+- Numbers
- Passwords
(- Text
... Times
- TimeSpans
Stage logging: [1Dont log parameters on this stage
‘warning threshold; System Default e Mumber of minutes 55 = (0 to disable) | QK I | Cancel

Figure 39 File Management Utility Read Lines from File — Input and Output Parameters

Commercial in Confidence Page 25 of 32

® Code Stages - Developer Guide
blueprism

Going Further

Our process is now a little more complicated than before we have stages for executing the Python script

and producing the output file. The next stage reads the file into Blue Prism and populates a collection
data item with the values found.

Blue Prism - Code Stage Example - Pyth
Using a simple Python script to
generate the first 25 member of the - m
Fibonzacei series to 2 taxt file We then .-'/ A
read in that text file and populate 2 Blue .I_ Start

Prism Collection.

Environment5tart
Input Parameters

Process
/F'mcEs oCal r riptFil W
< C\Python3g / odEtage\Py‘thc/u(S ¥

"// FileTeRe=d / ManUt"e?'nénl:I:l:ea-d
i CodeStage) Python'Outputs\Fibonacéite =3

Lines Frem File

/ stzrtline / Endline
[l 50

4 ™
{ End :I

\

[Qutput Parameters

/ Success
True

f Message

// FibznacciSeries .~ %
o A
L Row 1of2s” -~ -

line Count / /End of File /
-3 True

Figure 40 Our Python Script Action

From the above image you can see the action has executed successfully, the success variable is set to
true, message is empty which confirms there were no errors, FibonacciSeries is populated with 25 items

and the end of file wasn’t reached but we know there were only 25 numbers to read in and finally the line
count is set on 25.

This is just a method by which we can execute a Python script from inside of Blue Prism, technically it

isn’t being executed inside of Blue Prism, but you might have the circumstances where this is exactly
what you need.

Now to make maximum use of the action, we would add parameters to the start stage that cover all the

input parameters that we have created. This way, when it is called from a Blue Prism process, we gain
maximum benefit from its functionality.

’ Start Properties

MName;

Name Description Data Type Store In
SeriptFile Text SeriptFile
ProcessToCall Text ProcessToCall
StartLine MNumber StartLine
[NGES <]

Figure 41 Start Parameters for the Action

Commercial in Confidence Page 26 of 32

Code Stages - Developer Guide

bl ueprlsrﬁ Going Further

Using IronPython

Let’s look now at executing a Python script from inside of a code stage in Blue Prism. For this we will use
the IronPython extensions. It is recommended for this that you have access to at least Visual Studio Code
or Visual Studio itself.

IronPython is an open-source implementation of the Python programming language that is integrated
with the .NET framework. More details of IronPython can be found at http://ironpython.net.

IronPython can be installed into Visual Studio through nuget.

We are going to use a variant to our original file, IPFibonacci.py and execute this inside of a Blue Prism
Code stage. We need to use a different file as IronPython is based on Python 2.7, whereas our previous
Python work was based on the current 3.8 release. The only difference between the 2 files is the way the
pathname is constructed.

Now, in order to make this work from Blue Prism we need to add the IronPython.dIl assembly to the
Global Assembly Cache (GAC). This is done with a utility called gacutil. This utility is best called from the
Visual Studio Command prompt window that is available under your Visual Studio application group on
the windows menu. In order to modify the global assembly cache, it is necessary to execute this
command prompt as an administrator. This is done by right clicking the application and choosing the
‘More’ option and then ‘Run as Administrator’.

B visual Studio 2019

> Debuggable Package Manager Explore

’j Developer Command Prom ~

-2 Pin to Start n

> Developer PowerShell for V =

More > -2 Pin to taskbar Vindows
M Visual Studio 2019 owerShell ISE

[E Uninstall LS Run as administrator k‘

CS C& QS m Open file location
o 30

J. Visual Studio Installer 4 3 <

l Visual Studio Code

Figure 42 Launching the Developer Command Prompt as Administrator

Once you have the command prompt open you will need to locate the file IronPython.dll. Now the
recommended way to develop code stages like this is to code them initially in Visual Studio or Visual
Studio Code, VS Code is free and there is the community version of Visual Studio that can be used for
non-commercial projects. This allows you to get the code right along with any needed references. Given
that some references may need to be downloaded from Nuget, it will make it easier to install the
necessary file into the GAC.

So, when you have your prototype application in Visual Studio, get the path for the file IronPython.dll, this
will be visible in the references node and then look at the path property. In the developer command
window change the directory to this path and then you are ready to install the assembly into the GAC.

This is done with the following command:
Gacutil /i ironpython.dll

If this is successful, an appropriate message will be displayed, and you can then close the command
window.

Commercial in Confidence Page 27 of 32

http://ironpython.net/

Code Stages - Developer Guide

bluepﬂsrﬁ Going Further

Iron Python Business Action

Once we are happy that our code is working in Visual Studio, we can take the code across to our Blue
Prism business object and place it into the code window. In order to make this code work, we need to tell
Blue Prism about the additional assembly references that we require.

Those additional references are as follows:

. Microsoft.Scripting.dll

* System.Core.dll

. Microsoft.Dynamic.dll

. Microsoft.Scripting.Metadata

Conditions Information Global Code Code Options

External References Browse ...
System.Xml.dll

System.Drawing.dll
Microsoft Scripting.dil
System.Coredll
Microsoft. Dynamic.dlil

Micresoft. Scripting. Metadata.dl|

IronPython.dll

v Remave

Namespace Impaorts
System
System.Drawing
System.Data
IronPython Hesting

System. |0

Remove

Language: |CH e |

Figure 43 Code Options for the Iron Python References

With the references in place, we should now be able to run our IronPython action. The complete action is
shown in fig.40

Commercial in Confidence Page 28 of 32

Code Stages - Developer Guide

bluepﬂsrﬁ Going Further

Blug Prism - Code Stage Example - IronPython Script
Example of caling an Iron Python script frem 2 G# Code

Stage.

Input Parameters

_:rlpt:at: 7/ }
C"\ch o r Star‘tJLlne
/ =8 ol

/ Endline
-

nputFilePat] Utility - File
Chfodestage\PythonOutputshi ManagementResd
pFibonaccitd Lines From File
(Output Parameters 'S Y

4 4 | End)I
/ Success ' M " _/
/o True 9
nacciSe|
E %% 7 %
Row 1 of .
¢ el |

fine Count /| fEnd of File /
ZE Trus

Figure 44 The IronPython Action

As you can see it resembles the previous Python script action, indeed there is very little difference in
other than how the python code is being executed. The file is created in IronPython and then read into
Blue Prism using the same File Management Utility. The FibonacciSeries collection data item can be
seen populated with the content of the file as it was previously.

Here is the code that is in use in the IronPython code stage.

Inputs Outputs Code

var py = Python.CreateEngine():;
string scriptpath = @"C:\Python\Scripts\ipfibonacci.py";
if (File.Exists(scriptpath))

py.ExecuteFile (scriptpath)

=1 s Lo B

Figure 45 The IronPython Code Stage
We have covered a lot of ground over the last 2 actions. We will now round off with a look into executing
a PowerShell script.

Powershell Script

We can call a Powershell script in a similar manner to how we called a Python script. We use the
Environment Utility and call the Start Process Action.

In the example files there is a PowerShell script named directorylisting.ps1. It will perform a directory
listing

$a = dir "C:\\program files (x86)\\Blue Prism Limited\\Blue Prism Automate" -Recurse
$a | out-file -encoding ascii c:\\codeexamples\\powershell\\outputs\\directorylisting.txt

This script produces a recursive directory listing of the Blue Prism Automate directory and stores it in a
variable. That variable value is then piped into another PowerShell command to output it into a text file.

Commercial in Confidence Page 29 of 32

® Code Stages - Developer Guide
blueprism

Going Further

Here’s our Action to execute the Powershell script.

Action Properties

ility - Environment::Start Process;

Description:

Business Object | Utility - Envirenment - @

Action |Start Process - |

Inputs Outputs Conditions

MName Data Type Walue
Application Text [ProcessToCall]
[ScriptFile]

Figure 46 Start Process — Executing a Powershell Script

When our script executes, it will write the output file into the c:\codeexamples\powershell\outputs folder.
The next stage of our action will read in the listing file and place it into a Blue Prism collection.

& Action P roperties

ility - File Management::Read Lines From File

I _

Business Object | Utility - File Management ~| @

Action |Read Lines From File -

Inputs Outputs Conditions

Name Data Type Value
File Path Text [InputFilePath]
Start Line Mumber [StartLine]
[EndLine]

Figure 47 Read File — Input Parameters

Business Object | Utility - Fil= M nt ~| @

Action |Read Lines From File -

Inputs Outputs Conditions

MName Data Type Store In
Success Flag Success
Mezzage Text Message
Lines Collection Lines

Line Count MNumber Line Count

Figure 48 Read File — Output Parameters

Finally, the complete Powershell action.

Commercial in Confidence

Page 30 of 32

Code Stages - Developer Guide

bluepﬂsrﬁ Going Further

Blue Prism - Code Stage Example - Pow
An example of caling 2 Powershell
scriptThe script produces a directory
listing and writes it to a file The next
action reads that file into a collection
data item.

Input Parameters

FrocessToCall /‘ S
CWWhdows! System 32 WindowsPowerSheliiv10 'I\ Start
ScriptFile
= eStagepowershellscriptshdirectoryl
psl
Utility - Envircnment=Start
nputFil Process
= estage’,powershelloutputsidirects
utnit

& i
EndLine
5000
Utility - File
Management-Read

Lines Frem File

[Output Parameters |
I I

|
| Success / y Message /é— +

True

/ Lin

ine Count / nd of File /
405 / True /

Figure 49 The Powershell Action

Commercial in Confidence Page 31 of 32

Code Stages - Developer Guide

b I U e p rl S m Conclusion

Conclusion

Code stages provide that level of functionality that allows you to go that extra mile. For those things that
you just can’t make work using the normal Blue Prism tools. At the same time, some things that you may
think that could only be accomplished with a code stage can be done using existing Blue Prism tools.

You should also now have a good understanding on the use of parameters and storing their values in
data items. This makes your objects more reusable and should help to reduce maintenance.

Commercial in Confidence Page 32 of 32

