

For more information please contact:

info@blueprism.com | UK: +44 (0) 870 879 3000 | US: +1 888 757 7476

www.blueprism.com

Blue Prism Learning
OBJECT DESIGN GUIDE

VERSION: 1.2

 Commercial in Confidence Page 2 of 23

Contents

1. Introduction .. 3

2. Business Objects ... 3

3. Single-Object Designs ... 4

3.1. Only 1 developer can work on the ERP object at a time .. 5

3.2. Any process which automates the ERP System must consume into memory all the actions within ERP
object, including the actions it doesn’t use. ... 6

3.3. Any change to the ERP object is effectively a change to any process that calls it 8

3.4. The ERP object will be larger and less efficient that necessary .. 9

3.5. When is a Single-object design appropriate? ... 10

4. Multi-Object Designs .. 10

4.1. 5 developers can now build objects that automate the ERP System at the same time 11

4.2. Any process which automates the ERP System only consumes less actions into memory 12

4.3. A change to the actions within the ERP object will impact less processes .. 13

4.4. The individual objects will be smaller and more efficient with a smaller application model 13

4.5. When is a multi-object design appropriate? .. 13

5. Multi-Object Design Example ... 15

5.1. Basic Actions - Example .. 15

5.2. Other Objects - Examples ... 16

6. Shared Application Models ... 20

6.1. Making an Application Model Shareable.. 21

6.2. Using a Shared Application Model ... 22

7. Naming Conventions .. 22

8. Object Design – 5 Golden Rules .. 22

The information contained in this document is the proprietary and confidential information of Blue Prism Limited and should not be
disclosed to a third party without the written consent of an authorised Blue Prism representative. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without the written
permission of Blue Prism Limited.

© Blue Prism Limited, 2001 - 2017

All trademarks are hereby acknowledged and are used to the benefit of their respective owners.
Blue Prism is not responsible for the content of external websites referenced by this document.

Blue Prism Limited, Centrix House, Crow Lane East, Newton-le-Willows, WA12 9UY, United Kingdom
Registered in England: Reg. No. 4260035. Tel: +44 870 879 3000. Web: www.blueprism.com

file:///C:/Users/adutton/Documents/Rebranding/Templates/www.blueprism.com

 Commercial in Confidence Page 3 of 23

1. Introduction

This guide will outline how to ensure Business Objects are designed to be efficient, scalable and re-useable. The
guide will compare a single object per application design against a multi-object per application design and
highlight the advantages and disadvantages of each approach.

The guide is aimed at Blue Prism Developers and Solution Architects who have completed the Blue Prism
Foundation Course.

After reading this guide you should be able to:

• Describe the advantages and disadvantages of single-object and multi-object designs.

• Design an efficient, scalable and re-useable object layer for any application.

2. Business Objects

A business object is the instrument that a process uses to control an application. The object layer is for application
logic only and actions should be small, generic and re-useable. Business objects should not contain any business
logic or process rules.

Ideally an object should offer a set of simple functions that a process can orchestrate into a complex sequence. By
absolving the object of responsibility for business rules and decision making, the aim is to enable the objects to be
reused by many different processes and for an object ‘library’ to be built up. And as the diversity of the object
library increases, the effort to deliver an automated solution should decrease.

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 4 of 23

3. Single-Object Designs

By single object design we mean that one object is built for an entire application. An example of this is illustrated
below:

In the diagram above, we have

• A business application, the ERP System

• A single object, ERP object, to automate the ERP System

• Four processes, Update Customer, Create Quotes, Create Orders and Get Order History, which call the
ERP object to perform automated tasks against the ERP System.

Whilst this design will work, it provides some challenges and risks:

• Only 1 developer can work on the ERP object at a time.

• Any process which automates the ERP System must consume into memory all the actions within ERP
object, including the actions it doesn’t use.

SESA544752
Highlight

 Commercial in Confidence Page 5 of 23

• Any change to the ERP object is effectively a change to any process that calls it

• The ERP object will be larger and less efficient than necessary.

3.1. Only 1 developer can work on the ERP object at a time

Blue Prism only allows one developer to work on an object at the same time. With the single-object design
above, this means that only one developer can be working on the entire ERP system interface at a time. Where
there is a need for multiple developers to build actions to automate different areas of the ERP System, the single-
object design will slow down the development phase.

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 6 of 23

3.2. Any process which automates the ERP System must consume into memory all the
actions within ERP object, including the actions it doesn’t use.

The diagram below illustrates how the Update Customer process only uses 5 actions namely

• Launch

• Login

• Main Menu

• Logout

• Set Customer Details

 Commercial in Confidence Page 7 of 23

However, with the single-object design, all the actions are consumed into memory when the Update Customer
process runs as the entire object is consumed.

 Commercial in Confidence Page 8 of 23

3.3. Any change to the ERP object is effectively a change to any process that calls it

Suppose the Get Order History process requires a change to be made to the Get Order Details action. The Get
Order Details action is only used in the Get Order History process.

However, with the single-object design, a change to the Get Order Details action impacts any process calling the
ERP object. It exposes a risk of latent errors that could affect processes that don’t need to be changed. Any
change to the ERP object is effectively a change to any process that uses it.

SESA544752
Highlight

 Commercial in Confidence Page 9 of 23

Although this risk can be mitigated through regression testing, the bigger the ERP object grows and the more
processes that use it, the more regression testing is required for even the smallest of changes to the ERP object.

3.4. The ERP object will be larger and less efficient that necessary

As a single-object, the ERP object will contain all the required elements in the application model and all the
actions required to automate the ERP system. This will result in a large file being held on the Blue Prism database.
Section 2.2 has described how this large object will be consumed into the memory of any resource pc that is
running any process that automates the ERP system, but there is also an impact on the Blue Prism database size.

Each time the ERP object is changed, even if only a single action, a new version of the large object is saved to the
database with the older version being kept in the object history. The performance of the interactive client
machine when developing against a large object will also be adversely impacted.

As a single-object, the ERP object will have a large Application Model, which can be difficult to navigate and pose
an increased risk of the wrong element being changed.

SESA544752
Highlight

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 10 of 23

3.5. When is a Single-object design appropriate?

A single-object design is appropriate for a small proof of technology exercise or a proof of concept project where
delivery is done by a single developer and the object created will not subsequently be promoted to a production
environment. Additionally, a single-object design is appropriate for objects that do not use an application
modeller. These are not affected by changes to the target system and do not use up much memory e.g. Utility
objects.

In all other scenarios, a more efficient and scalable design is required using a multi-object design.

4. Multi-Object Designs

By multi-object design we mean that more than one object is built for an application. Although there are no hard
and fast rules regarding how many objects are built, a good rule of thumb to work by is to build a single object for
each screen that is to be automated. An example of a multi-object design is illustrated below:

In the diagram above, we now have

• A business application, the ERP System

• Five business objects to automate the ERP System

• Four processes, Update Customer, Create Quotes, Create Orders and Get Order History, which call the
required objects to perform the relevant automated tasks against the ERP System

This design is more scalable and efficient because:

• 5 developers can now build objects that automate the ERP System at the same time

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 11 of 23

• Any process which automates the ERP System only consumes less actions into memory

• A change to the actions within the ERP object will impact less processes

• The individual objects will be smaller and more efficient with a smaller Application Model

4.1. 5 developers can now build objects that automate the ERP System at the same time

There are now five separate business objects that automate different parts of the ERP system. This enables up to
five developers to work on objects automating the ERP system at any time. Over time, as more areas of the ERP
system are automated, the multi-object approach will mean additional objects are built thus enabling more
developers to work on ERP system object. The multi-object approach is more scalable and facilitates faster
development times.

SESA544752
Highlight

 Commercial in Confidence Page 12 of 23

4.2. Any process which automates the ERP System only consumes less actions into
memory

Section 2.2 discussed how the Update Customer process only uses 5 actions namely

• Launch

• Login

• Main Menu

• Logout

• Set Customer Details

With the multi-object design approach, the Update Customer process now consumes much fewer actions into
memory at run time.

 Commercial in Confidence Page 13 of 23

4.3. A change to the actions within the ERP object will impact less processes

In section 2.3 we looked at how the Get Order History process requires a change to be made to the Get Order
Details action. The Get Order Details action is only used in the Get Order History process.

With the multi-object design approach above, a change to the Get Order Details action, will only impact the Get
Order History and Create Order processes as these are the only processes calling the object that contains the Get
Order Details action. As a result of adopting the multi-object approach, the amount of regression testing required
has been reduced by 50%.

4.4. The individual objects will be smaller and more efficient with a smaller application
model

Each individual object contains less actions and a smaller application model as only the elements required for the
set of actions contained within the objects need to be defined. Subsequently, the individual objects consume less
space on the Blue Prism database, the database size grows less when a single action is changed and the
application model is more user friendly with less of a risk of the wrong element being amended.

4.5. When is a multi-object design appropriate?

SESA544752
Highlight

 Commercial in Confidence Page 14 of 23

All projects where it is possible that the business objects will end up in production, regardless of the size of the
initial development team.

Any proof of concept project whereby multiple developers are required to develop against an individual
application.

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 15 of 23

5. Multi-Object Design Example

The following example illustrates how to design an efficient, scalable and re-useable object layer.

5.1. Basic Actions - Example

All applications will require a ‘Basic Actions’ object. This will contain actions for tasks such as launching the
application logging in, closing the application and any other actions that not screen-specific such as ‘Go Home’. In
our example, we have the following actions defined in our ‘Basic Actions’ object.

 The only screen that this object is automating is the Login Screen.

Note how all the possible fields to be completed are driven by Inputs. Even if the first Blue Prism process which
calls the object uses the same value for a field, populating that field should still always be driven by an input
parameter to facilitate future re-use.

SESA544752
Highlight

 Commercial in Confidence Page 16 of 23

5.2. Other Objects - Examples

As discussed in section 3, other objects will be typically at an object-per-screen level. Below are some more
examples. Note how all the actions that write or set data are ‘told’ by the calling process what data to write in
the form of inputs. There is no need to have a separate action for each data item to be written, all fields can be
populated within a single action.

Actions that read or get data should simply read the data from the screen and pass it back to the calling process.
The calling process can then apply any process specific business logic to the data. By following this approach and
keeping any business logic out of the object layer enables maximum re-use of the object layer. There is no need
to have a separate action for each data item to be read, all fields can be read within a single action.

4.2.1 Account Details Screen

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 17 of 23

4.2.2 Find Account

 Commercial in Confidence Page 18 of 23

In this example, the Find Account action will perform a search based on the inputs provided and return to the
calling process the results in a collection called Found.

4.2.3 Notes

4.2.4 Attaching

You may have noticed that all objects except for ‘Basic Actions’ have an action defined called ‘Attach’. An object
must be attached to the application before it can be used to automate it. When an object launches an
application, it is automatically attached to that application. Therefore, the ‘Basic Actions’ object does not require
an ‘Attach’ action. The remaining objects that wish to work with an application that is already launch must first
attach to the application.

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 19 of 23

5.2.1.1. Attaching Best Practice
If an object attempts to attach to an application when it is already attached, an error will result. Therefore, when
building an ‘Attach’ action, it is best practice to first detect if the object is already attached to the application. A
typical ‘Attach’ action may look like this

By using the approach above, every other action within the object can call the ‘Attach’ page as is its first stage to
ensure the action is ready to work with the application e.g.

 Commercial in Confidence Page 20 of 23

6. Shared Application Models

Occasionally, you may encounter applications where it is not possible to Attach to the target application, making
the recommended multi-object design problematic. Fortunately, v5 of Blue Prism introduced the concept of a
shared application model to enable a multi-object design approach in such scenarios. When using a shared
application model, all the elements are managed within a single object (typically the object that launches the
application) and accessed by the other objects. In this scenario, there is no requirement for the other objects to
Attach to the target application.

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 21 of 23

6.1. Making an Application Model Shareable

In the object which owns the Application Model:

• Open the Properties of the Initialise action:

• Select the Information Tab and check the Shareable option

• Build your Application Model

 Commercial in Confidence Page 22 of 23

6.2. Using a Shared Application Model

In the object wishing to use a shared model:

• In the Application Modeller Wizard, select the radio button pertaining to ‘Share the application model of
another object’ and select the correct parent object from the drop down.

The elements will be subsequently be available to the object.

7. Naming Conventions

Avoid using terms that are process specific in your objects and actions. Remember an object is an application
interface which should be completely independent of any process which may use it.

objects names should be kept to {Application Name – Screen Name} format for example, PeopleSoft – Employee
Details.

Action names should be kept generic and provide an explanation of what the action does for example Write Data,
Read Data, Navigate to Salary Details Screen.

Using a combination of the above enables future users of the object to very quickly understand what tasks
individual actions perform.

8. Object Design – 5 Golden Rules

• Use a multi-object design approach

• Keep actions small and limited to a single specific task (e.g. read, write, navigate)

• Do not include process specific business logic in an object

• Use input parameters to drive what data is entered into an application and determine the contents of
these parameters in the process layer

SESA544752
Highlight

SESA544752
Highlight

 Commercial in Confidence Page 23 of 23

• Use output parameters to pass back values of fields held on the application. Where a process requires
business logic to be applied to data held on the application, apply that logic in the process layer.

