

blueprism.com

Blue Prism: Community Challenge
A Digital DA
Blue Prism recommend a series of best practices (a

consensus on the best way to do something) for

automation builds to ensure reliability, robustness and

maintainability; a Design Authority (DA for short) is in

charge of ensuring that this Best Practice is adhered to

within Blue Prism automations.

 Best Practice has basic elements, such as

ensuring the t’s have been crossed and the i’s dotted,

which can often be considered as binary i.e. met or not;

then more advanced levels where highly skilled insight

and analysis is required.

A Design Authority’s purpose is to ensure Best

Practice has been adhered to, but an astute reader will

be able to see the telltale signs of Blue Prism original

problem statement – highly skilled resource completing

manual, repetitive and time-consuming work.

The Challenge
Blue Prism’s own Center of Excellence decided that a

worthy challenge for the Blue Prism World (BPW)

Community Challenge was to create a “Digital Design

Authority”. A digital worker capable of validating

whether the basic or even intermediate best practices

were met on a build.

Each team would have 3 hours to design,

document, and build their Digital DA with two key

objectives:

1. Check any automation against a defined set of

criteria

2. Produce a validation report which includes

enough detail for:

a. A DA to approve the build

b. A developer to fix the issues

The teams were marked on:

Category Description

Best Practice A DA would approve the build

Design A robust and scalable design

Collaboration Teamwork makes dreamwork

Performance How much it can do and how well

Creativity How unique the approach was

A Symphony of automation
The winning team of the ‘BPW Hackathon Challenge’

were from Symphony, one of Blue Prism’s most

experienced ‘boutique’ Partners. Symphony, unlike

many teams, avoided complex custom code stages to

validate the Blue Prism releases. Instead, they relied on

best practice itself and the functionality within the

product.

How is this even possible?

Blue Prism Automations all share a unique

blueprint, written in a language called XML

(eXtensible Markup Language) which tells Blue

Prism: where to place things, what to place in

them, and what conditions to apply to them.

Blue Prism’s XML looks a little like this, where

the instructions of where to place a start stage

and what to do after would look like :

<stage name="Start" type="Start">

 <display x="-60" y="-135" />

 <onsuccess>End”

</stage>

Developers can build automations that review

the XML blueprint and compare it against the

principles of Best Practice.

COE

Blue Prism Community Challenge

2 | blueprism.com

Symphony attacked the challenge by splitting their

approach in two, they would create:

• A process: that would find automation files;

loop through them; and produce an

output/validation report for each

• Objects: custom pieces of Blue Prism

functionality that would check the specified

criteria

This approach gave them a competitive edge in

design, best practice and performance.

• Design: by using objects, you would only ever

have to build the process once, and you could

drag and drop new objects in depending on

what you wanted to check. Thus, a scalable

and maintainable automation existed from

the start.

• Best Practice; by using Blue Prism

functionality, they could apply standard Best

Practice and not have to evaluate the

ramifications of custom code

• Performance; by using objects, they were

capable of addressing one criteria, copy

existing functionality into addressing a new

one, address it, and copy even more

functionality into the next – exponentially

speeding them up.

In the end, their solution could take any

automation and examine 13 out of the 18 criteria,

before compiling the results ready for a report. Sadly 3

hours wasn’t quite enough time to finish the report

building section!

Noteworthy Contenders
 While Symphony took out the prize, there

were plenty of other teams who showed their own

style; many of whom aimed at code stages to attack the

XML and turn it into useful tables for Blue Prism to

consume. Some, such as the team from DiRWA, made

use of Microsoft’s Linq libraries to query the XML in

great detail. Others went for more basic XML libraries

to ingest the data into collections which could then be

looped through.

Blue Prism’s Center of Excellence
Blue Prism’s CoE team didn’t shy away from this

challenge either and they took on the challenge (under

the same conditions) before BPW. Their approach

mirrored Symphony’s in many ways, specifically the

decision to use utility objects, but their solution design

was fundamentally different.

 Where they differed was that Symphony were

examining the complete XML (all the instructions on

how to build the Blue Prism automation) every time

they checked a condition. Whereas the CoE’s solution

broke down that XML into constituent elements before

checking them for the criteria. This may not seem like a

small difference, but in practice would yield vastly

different results.

 Symphony’s solution would be quicker, it

considered the automations as a whole and therefore

could review them quicker. When taking a solution as a

whole, Symphony didn’t have to go looking for

anything, if you wanted to check a condition you had

everything you needed to check it. Whereas the CoE’s

solution would have to go find the element that it

needed to check to approve another element.

However, the CoE’s solution would be more

robust as by breaking down the automations before

reviewing them, any exceptions wouldn’t affect the

review – they wouldn’t have to start again. As

Symphony’s solution only considered the automation

as a whole, if any part of their solution failed when

reviewing the automation – the whole thing failed.

Whereas, the CoE’s solution considered every element

within the automation as a whole part. Therefore, if

one failed the review could continue on the other parts.

Summary
The challenge provided a new paradigm to

every team about automation within their business; it

demonstrated that even your internal RPA team have

opportunities for automation. One team even

suggested if a digital worker can review automations,

could it possibly also fix their issues…?

 The answer? Watch this space.

