
For more information please contact:
info@blueprism.com | UK: +44 (0) 870 879 3000 | US: +1 888 757 7476

www.blueprism.com

Web Services
User Guide

Major version: 6.3
Document Revision: 1.0

Commercial in Confidence Page 2 of 64

Trademarks and copyrights
The information contained in this document is the proprietary and confidential information of Blue Prism Limited and should not
be disclosed to a third-party without the written consent of an authorized Blue Prism representative. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying without the
written permission of Blue Prism Limited.

© Blue Prism Limited, 2001 – 2018

®Blue Prism is a registered trademark of Blue Prism Limited

All trademarks are hereby acknowledged and are used to the benefit of their respective owners.

Blue Prism is not responsible for the content of external websites referenced by this document.

Blue Prism Limited, Centrix House, Crow Lane East, Newton-le-Willows, WA12 9UY, United Kingdom

Registered in England: Reg. No. 4260035. Tel: +44 870 879 3000. Web: www.blueprism.com

http://www.blueprism.com/

Commercial in Confidence Page 3 of 64

Contents
Trademarks and copyrights 2

Contents 3

Introduction 5

Audience 5

Executive Summary 5

Exposing Web Services 6

Providing Access to the Web Services 7

Defining Web Service Parameters 8

Web Service Encoding Types 8

Expose a Business Object as a Web Service 9

Expose a Process as a Web Service 14

Consuming Third-Party Web Services 19

Accessing Third-Party Web Services 20

Web Service Parameters 21

Passing Credentials in the SOAP Header 22

Set up a Third-Party Web Service in Blue Prism 23

Use a Third-Party Web Service in Blue Prism 28

Design Considerations for a Blue Prism Web Service Interface 33

Session Management 34

Session Management Design 34

Licensing and Session Management Examples 36

Scenario 1 36

Scenario 2 36

Scenario 3 37

Scenario 4 37

Scenario 5 38

Recommended Approach 39

Example 40

Advantages 40

Encrypting Exposed Blue Prism Web Services 41

Configuring Blue Prism Runtime Resources to use certificate-based encryption 41

Encrypting Blue Prism Web Services using a proxy 41

Securing access to Blue Prism Web Services 42

Accessing the WSDL 42

Executing restricted Objects or Processes 42

Consume Web Services using Code Stage Based Business Objects 43

Pre-requisites 43

Commercial in Confidence Page 4 of 64

Steps 44

Generate a new Business Object 44

Auto-Generate Code using wsdl.exe or wsewsdl3.exe 46

Copy the relevant code to the Business Object 47

Add the necessary External Library References 49

Generate a Wrapper Code Stage 51

Consume an Exposed Blue Prism Web Service using Visual Studio 54

Pre-requisites 54

Steps 54

Download and Import the Sample Business Object and Process 55

Create a new console application with Visual Studio 57

Add Web References to each WSDL 58

Example Code: Interact with a Business Object based Web Service 59

Example Code: Interact with a Process based Web Service 61

Example Code: Trigger the Interactions when the application is run 62

Frequently Asked Questions 63

Commercial in Confidence Page 5 of 64

Introduction
This document provides an overview of the capabilities of Blue Prism when used in environments which feature Web Services.

This guide provides information about:

• Exposing a Blue Prism Business Object as a web service.

• Exposing a Blue Prism Process as a web service.

• Consuming third-party web services in a Blue Prism Business Object or Process.

The following advanced topics are also included:

• Design considerations for a Blue Prism Web Service interface

• Expose Blue Prism Web Services using a Proxy

• How to interact with third-party web services that provide data using a polymorphic structure.

• How to create an independent web service client in Visual Studio that can interact with an exposed Blue Prism web
service.

Audience
This document is intended to provide information to solution architects and designers, developers and Blue Prism accredited
developers.

Executive Summary
Blue Prism is designed to automate any application that can be accessed from aWindows PC through the Graphical User
Interface (GUI), however there are some scenarios where users may wish to automate and integrate via web services.

Web service connectivity is supported by Blue Prism to allow:

• Third-party applications or developers to utilise and initiate Business Objects and Process within Blue Prism for purposes
of:

• Interacting with legacy systems which are already automated by Blue Prism.

• Adding work items to the appropriate queues ready for processing based on the pre-determined schedules.

• Triggering work items to be processed by Blue Prism immediately (subject to resource availability).

• Retrieving data from systems which Blue Prism automates.

• Retrieving information from Blue Prism (e.g. details of work queues, schedules, work history etc.).

• Blue Prism Business Objects and Processes to interact with third-party systems through use of published web services.

Web service integration is a traditional software development technique and its use should be evaluated against the following
high-level considerations:

• Performance impact on underlying systems during periods of high demand.

• Ensuring that any data validation that is implemented at the presentation layer is manually applied to web service
interactions (e.g. verifying that this validation logic is not bypassed through use of web services).

• The level of IT governance may differ to that required for GUI-based automations. Often web services provide broader
capabilities than can be achieved by an end user working through the graphical interface of an application.

Commercial in Confidence Page 6 of 64

Exposing Web Services
Once implemented, Blue Prism quickly becomes a secure repository that contains detailed information about the various
systems and business processes that are available to be processed and worked by the virtual workforce provided by Blue Prism.

This information contains all of the available actions that can be taken across the various systems and technologies, as well as the
details of what rules, decisions and procedures need to be followed in order for the Blue Prism runtime resources to successfully
complete a process.

Through exposing the Blue Prism Business Objects and Processes, third-party systems and developers can invoke these web
services to utilise the power and flexibility of Blue Prism for a number of purposes:

• Interacting with legacy systems which are already automated by Blue Prism.

• Adding work items to the appropriate queues ready for processing based on the pre-determined schedules.

• Triggering work items to be processed by Blue Prism immediately (subject to resource availability).

• Retrieving data from systems which Blue Prism automates.

• Retrieving information from Blue Prism (e.g. details of work queues, schedules, work history etc.).

The approach of allowing third-party systems or developers to interact with Blue Prism in this way provides a number of
advantages:

• All third-party systems and developers connect to a given system via a method which enforces the rules designed into
Blue Prism.

• Enforces commonality in the way that systems are automated (e.g. removes different rules and paths being followed by
each developer or system).

• Blue Prism provides a common interface for any system that it automates irrespective of the technology that is being
automated (i.e. mainframe, web applications, .NET application, excel, SQL database etc.)

• Provides a common method of applying any changes required to the interface, and aligns them with existing internal
change management policies. Additionally all changes to the actions and processes required are managed and controlled
centrally using the visual designers by the appropriate team(s).

Blue Prism web services are natively SOAP, WSDL-based services. Native support is not provided for creating RESTful Blue Prism
web services.

Commercial in Confidence Page 7 of 64

Providing Access to the Web Services
In order to allow access to Blue Prism web services the following items will need to be reviewed:

• Network connectivity to the Blue Prism runtime
resources - The systems which are to interact with the
web services will need to have network connectivity
to the designated Blue Prism resources.

By default Blue Prism web services are made available
on port 8181 for TCP traffic however this is
configurable.

See Securing Exposed Blue Prism Web Services for
further information about securing these connections
using certificate-based encryption.

• Security permissions to interact with the web services
- When a system makes a call to a Blue Prism web
service, Blue Prism access credentials will need to be
provided that give the system or user the appropriate
permissions to carry out the actions.

It is recommended that a user account is set up for each third-party provider that will interact with the web services. This
user account should be allocated the minimum security permissions required to successfully execute the Blue Prism
Business Objects and Processes. (E.g. if the process requires access to credential information that is restricted, the
account used by the third-party system will require appropriate permissions to utilize this credential).

Where Blue Prism is integrated with Active Directory for Single Sign-on, the connecting system will need to provide the
credentials for a domain account with appropriate Blue Prism privileges.

• Web service definition (WSDL) - The third-party system or developer will typically require access to the WSDL for the
appropriate web service(s). Once the machine name and port for the runtime resource have been identified the
following URL will provide the name of each available web service, a short description and the address of the WSDL. The
WSDL contains the path of the web service.

http://[machine name]:[port]/ws/

Where the Blue Prism Runtime Resource has been configured with certificate-based encryption, the prefix will be https.

Commercial in Confidence Page 8 of 64

Defining Web Service Parameters
The Blue Prism Web services can be configured to both accept input parameters, and return output parameters. The parameters
that will be configured as part of the Blue Prism web services are based on the input and output parameters defined on the
respective Business Objects and Processes.

Blue Prism Data Type Web Service XSD Data Type

date date

dateTime dateTime

flag boolean

number decimal

text String

time time

timespan duration

binary base64binary

The displayed Blue Prism data types are supported for both input and output parameters and will be mapped to the appropriate
web service XSD data types.

Blue Prism supports the use of data collections (lists) as both input and output parameters providing that the structure of the
collection is predetermined and is made up exclusively of data items of a supported data type.

Web Service Encoding Types
The encoding type that will be used for each action within a given object or process that is exposed as a web service is dependent
on the nature of the input and output parameters that are defined. By default, the following encoding types will be applied:

• RPC/encoded - The default encoding type for each action.

• Document/literal - The encoding type used for actions that contain an input or output parameter with a type of collection.

Exposed Blue Prism web services are presented with UTF-8 character encoding.

Enforcing Document/literal encoding
For situations where there is a requirement for all actions to
use Document/literal encoding an action is available as part of
the wizard to Enforce Document/literal encoding.

This will ensure that all actions within the object or process
are encoded using Document/literal irrespective of whether a
collection is featured within the input or output parameters of
the action.

Use Legacy Namespacing
The namespacing applied to actions that are RPC/Encoded was
updated in Blue Prism 6.2. It is possible to select to continue
to use the previous (legacy) namespacing for these actions be
selecting the appropriate option in the Expose Web Service
wizard.

Commercial in Confidence Page 9 of 64

Expose a Business Object as a Web Service
This walkthrough provides the steps required to make a Blue Prism Business Object available as a web service. Steps are also
provided to verify that a Business Object is available as a web service and how to access the WSDL.

1. Enter System Manager and select the Objects area and click Expose a Business Object.

Commercial in Confidence Page 10 of 64

2. A list of Business Objects which are not currently exposed as web services is presented. Select the Business Object that is
to be exposed and click Next.

The wizard will use the name of the Business Object to suggest a suitable name that will be used for the web service.

Commercial in Confidence Page 11 of 64

3. It is possible to change the name at this point however if the name is a duplicate of a previously exposed Blue Prism Web
Service or if any invalid characters are detected a warning will be shown. Click Auto Correct to remove any invalid
characters and ensure that the name is unique.

Commercial in Confidence Page 12 of 64

4. Once the name is acceptable, Click Finish.

The newly exposed web service name will now appear in the list alongside the name of the Business Object.

Commercial in Confidence Page 13 of 64

The web services that are exposed from Blue Prism can be confirmed by using the following URL which also provides the address
of the WSDL: http://[machinename]:<port>/ws/.

In this example the machine name is resource001 and the default port of 8181 is in use: http://resource001:8181/ws/

Where the Blue Prism Runtime Resource has been configured with certificate-based encryption, the prefix will be https.

http://resource001:8181/ws/

Commercial in Confidence Page 14 of 64

Expose a Process as a Web Service
This walkthrough provide the steps required to make a Blue Prism Process available as a web service. Steps are also provided to
verify that a Process is available as a web service how to access the WSDL.

1. Enter System Manager and select the Processes area. Click Exposure and Expose a Process.

Commercial in Confidence Page 15 of 64

2. A list of Processes which are not currently exposed as web services is presented. Select the Process that is to be exposed
and click Next.

The wizard will use the name of the Process to suggest a suitable name that will be used for the web service.

Commercial in Confidence Page 16 of 64

3. It is possible to change the name at this point however if the name is a duplicate of a currently exposed Blue Prism web
service or if any invalid characters are detected, a warning will be shown. Click Auto Correct to remove any invalid
characters and ensure that the name is unique

.

Commercial in Confidence Page 17 of 64

4. Once the name is acceptable, Click Finish.

The newly exposed web service name will now appear in the list alongside the name of the Process.

Commercial in Confidence Page 18 of 64

The web services that are exposed from Blue Prism can be confirmed by using the following URL which also provides the address
of the WSDL.
http://[machinename]:<port>/ws/.

Where the Blue Prism Runtime Resource has been configured with certificate-based encryption, the prefix will be https.

In this example the machine name is resource001 and the default port of 8181 is in use: http://resource001:8181/ws/

Commercial in Confidence Page 19 of 64

Consuming Third-Party Web Services
Blue Prism provides the ability to automate third-party applications through the use of published and accessible web services.

An intuitive wizard assists users to configure Blue Prism to be aware of any number of web
services and once setup, the configured web services are available for use within the Blue
Prism visual designer tools (Object Studio and Process Studio). These web services are
presented and utilised in a way that is code free and intuitive.

Unlike typical Blue Prism automations which interact with applications using the Graphical
User Interface (GUI), web service integration is a traditional technique that operates at the
Business Logic layer (as opposed to the presentation layer) and maybe susceptible to
additional complexity.

The following topics should be reviewed when considering the use of web service
integration:

• It is common for applications to apply more stringent data quality and validation rules
at the Presentation Layer than the Business Logic Layer. Web services interact directly
with the Business Logic Layer and therefore it is possible that validation logic that is
only presented via the GUI will be bypassed. Therefore it may be necessary to
manually implement additional verification steps to ensure such validation continues
to be applied.

• Web services may provide processes with a wider number of actions in the third-
party systems than the users can achieve via the user interface and therefore may
require additional IT governance.

• By directly connecting with the Business Logic Layer additional strain may be placed on the platforms that underpin the
target applications. It may be necessary to add additional configuration to the processes to ensure that the target
applications are not over-burdened during periods of high-use or demand.

• There are a large number of technologies, conventions and standards available for publishing web services - therefore is
not possible to natively support all of these within Blue Prism. Where a web service does not conform to the standards
supported within Blue Prism it will be necessary to use programming techniques to interface with web service(s).

Commercial in Confidence Page 20 of 64

Accessing Third-Party Web Services
Blue Prism can consume third-party web services which are SOAP-based with the following binding styles:

• RPC/encoded

• document/literal

The ability to consume such web services is also reliant on:

• The input/output web service data types having a corresponding data type within Blue Prism (as described above)

• The web service WSDL being valid and wholly containing compliant XML

• Blue Prism having appropriate connectivity to the web service

• The character encoding of the web service being UTF-8

• Access authentication being handled via one the of the following methods:

• Independently of the web service call (e.g. based on IP security).

• Through use of mutual, certificate based authentication.

• Through use of username and password as part of the HTTP header.

Support is primarily provided for a range of SOAP Web Services, however support for REST web services is provided for
developers with appropriate programming experience through use of a series of example VBOs: REST, HTTP, JSON and
OAuth.

In order to access a third-party web service from within Blue Prism, the SOAP WSDL of the respective web service can be
imported via System Manager. (See Setup a Third-Party Web Service in Blue Prism for guidance).

Once setup, a web service is available via Object Studio or Process Studio as if accessing a pre-existing Blue Prism Object.

Commercial in Confidence Page 21 of 64

Web Service Parameters
Blue Prism can pass data as parameters to the web services which will define the parameters that are available to be passed
along with the type of data that is expected. The following web service (XSD) data types are supported by Blue Prism.

Web Service XSD Data Type Blue Prism Data Type

date date

dateTime datetime

boolean flag

decimal, float, double, pDecimal, integer, nonPositiveInteger, nonNegativeInteger, long,
negativeInteger, unsignedLong, int, positiveInteger, unsignedInt, short, unsignedShort,
byte, unsignedByte

number

String, normalizedString text

time time

duration timespan

base64binary binary

If a web service to be consumed has any input or output parameters which have been defined with a type other than one
presented in the above table, this web service is not natively compatible with Blue Prism.

Complex Data Types
When consuming web services, complex types (e.g. compound structures and arrays, lists) that are composed of the supported
types listed above can also be consumed. They will be mapped into Collections within Blue Prism.

Native support is provided for a subset of the complex data type schema constructions including: xsd:all, xsd:element, and
xsd:sequence.

When exposing complex types (collections) via input or output parameters, the collections must be set up within Blue Prism with
pre-defined fields (rather than a dynamically defined structure).

Web services which use polymorphic data structures as input or output parameters are not natively compatible with Blue Prism.

Where data structures are not natively supported, advanced techniques involving code stages can typically be used to work with
such services. For more information, see Consume Web Services using Code Stage Based Business Objects.

Commercial in Confidence Page 22 of 64

Passing Credentials in the SOAP Header
Microsoft Web Service Enhancements (WSE) 3.0 includes a set of classes that implement additional web service specifications to
the SOAP protocol such as custom security and reliable messaging. These specifications are commonly denoted by the WS-
prefix and includes WS-Security.

WS-Security implemented by WSE 3.0 requires that the web service authentication credentials (username and password) are
passed within the SOAP header.

When consuming web services with this configuration it is necessary to use advanced techniques including code stages. (See
Consume Web Services using Code Stage Based Business Objects).

Related configuration can also be achieved using code stages and may include specifying the value of attributes such as
MustUnderstand or configuring whether to include the WS-Addressing headers.

Commercial in Confidence Page 23 of 64

Set up a Third-Party Web Service in Blue Prism
This procedure provides the steps required to make a third-party web service available within Blue Prism. See the separate
walkthrough for instructions on how to use/consume the third-party web service.

1. Enter System and select Web Services within the Objects area. Click Add Service to launch the wizard.

2. Enter the URL of the WSDL which defines the web service and click Next.

If the WSDL is stored locally, it is acceptable to enter a local file location (e.g. c:\WSDLs\CurrencyConversionService.wsdl).

Commercial in Confidence Page 24 of 64

3. If required by the web service, enter the authentication information for the web service. Click Next.

4. Specify the timeout value – this is the length of time (milliseconds) which Blue Prism will wait for a response from the
web service before assuming the request has timed out. Click Next.

Commercial in Confidence Page 25 of 64

5. Blue Prism will parse the information contained within the provided WSDL. Click Next to proceed.

6. Select the web service that is to be consumed and click Next.

Commercial in Confidence Page 26 of 64

7. Select which methods from the web service should be available within Blue Prism and click Next.

The wizard will suggest a name that will be used for the web service. If the name is a duplicate of a previously exposed
Blue Prism web service or if any invalid characters are detected a warning will be shown.

Commercial in Confidence Page 27 of 64

8. Click Auto Correct to remove any invalid characters and ensure that the name is unique.

The web service name will now appear in the list of Web Services that are enabled and available for use.

Commercial in Confidence Page 28 of 64

Use a Third-Party Web Service in Blue Prism
This walkthrough provides an example of how to use a third-party web service which has been made available within Blue Prism.
See the separate walkthrough for instructions on how to setup a third-party web service to be available in Blue Prism.

1. From the Studio tab, right-click and select Create Object.

2. Enter a name for the new business object and click Next.

Commercial in Confidence Page 29 of 64

3. Enter a description for the new business object and click Finish.

4. Open the newly created Business Object by double-clicking.

5. Click on the page named Action 1 and create an Action item by dragging the Action icon from the toolbar.

6. Double-click the Action item to set the properties.

Commercial in Confidence Page 30 of 64

7. Enter the Name, and select the appropriate web service from the Business Object list.

8. Select the appropriate action from the list, note that any required input parameters are presented and can be completed.

Commercial in Confidence Page 31 of 64

9. Click the Outputs tab and define any necessary data items or collections that are required to store the output information.
Click OK.

10. Connect the nodes in the designer using the Link tool.

11. Save the business object by clicking File > Save.

Commercial in Confidence Page 32 of 64

12. Test the business object by clicking Reset and then using the Step button to progress through the nodes and review the
value of the output parameters to confirm that the web service has responded successfully.

Commercial in Confidence Page 33 of 64

Design Considerations for a Blue PrismWeb Service Interface
When deciding to expose Blue Prism web services for consumption by external systems there are a number of design
considerations that should be reviewed to ensure that the approach both meets the intended requirement, and aligns with the
capabilities of the Blue Prism platform.

• Synchronous vs Asynchronous Processing - If there is a requirement for requests to be fully serviced immediately upon
receipt, it should be considered that the nature of processes often require interaction with various other systems and
potentially complex rules and decision to be applied. This can result in the receiving Resource being busy for relatively
long periods of time and, except for in a small number of scenarios, unable to accept additional requests during this
period.

• Due to the process complexity there may be significant merits to the overall solution if the processing can be handed-off
to a “team” of Blue Prism Runtime Resources for asynchronous processing. This approach provides improved demand
management by working items in order, as capacity becomes available. Additionally asynchronous processing can better
leverage functionality provided by the platform such as message queuing, exception handling and reacting to variance in
network and application performance.

• Processing Volumes - The pattern and volume of processing requests will also affect the design of the web service
interface particularly if there is a requirement for concurrent requests to be received by a given Runtime Resource PC,
or if there is the likelihood of large peaks in demand.

Consideration should be given to whether the Runtime Resources which receive the requests are able to receive multiple
requests from a technical perspective. This is dictated by:

• Whether the nature of the request requires a new session to be created for each request received. This is further
affected by the run mode of the sessions being created; as well as any other work that the Runtime Resource may
be responsible for.

• Whether the platform licensing caters for the volumes of sessions that may be required at periods of maximum
demand.

Subject to requirements, the web service interface can be designed such that both the requirement for new sessions to be
created and the subsequent impact on the license can be both predicted and controlled.

Inappropriately designed interfaces could introduce availability and performance limitations, even when request volumes
are low.

Commercial in Confidence Page 34 of 64

Session Management
Blue Prism sessions are a fundamental principle in way that Runtime Resources perform work and represent a runtime instance
of an execution. They are also subject to license restrictions in that typically the Blue Prism license will limit the number of
sessions which can run concurrently.

In order to understand whether the interface will be able to accept multiple concurrent requests both technically, and from a
licensing perspective, it is important to understand how the design can impact session management and whether a single
Resource PC can accept multiple concurrent connections.

Session Management Design
Sessions are managed differently depending on whether the web service request is directed at a Blue Prism Process or Business
Object and whether auto-initialization is utilized.

• Connecting to an Exposed Process - Each request to an exposed Process will require a new session to be created resulting
in potentially large numbers of sessions to be created which could impact licensing. It will also be necessary for the
receiving Runtime Resource(s) to be able to have multiple concurrent active sessions. Typically this is limited by the run
mode of any existing sessions as well as the run mode of any sessions being created.

• Connecting to a Business Object using manual-initialization - Each caller will programmatically manage the session
creation resulting in the possibility that a single session could handle multiple requests. The likelihood is that a given
Runtime Resource will need the ability to have multiple concurrent sessions active at a given time which could impact
licensing and also requires the receiving Runtime Resources(s) to be able to have multiple concurrent active sessions.

• Connecting to a Business Object using auto-initialization - Blue Prism will manage the assignment of requests to a session
automatically for processing requests to exposed Business Objects where the connection is set to use auto-initialization.
This means that a single session per resource can potentially handle unlimited requests – the implication being that
because new sessions are not continually required, the licensing impact is limited. The requirement for the Runtime
Resource to have multiple concurrent active sessions is largely mitigated, unless the Resource is expected to
concurrently handle other types of processing.

Commercial in Confidence Page 35 of 64

Whether or not an additional concurrent session can be created on a given Runtime Resource is based on:

• Licensing - Typically the Blue Prism license will limit the number of sessions which can be concurrently active across the
estate and therefore there must be sufficient capacity available for the additional session to be created.

• Session Run Mode - The run mode of any current sessions on a given Runtime Resource as well as that of the newly
requested session will impact whether or not it can be created. The run mode of the session is determined by the most
restrictive setting applied to any of the Business Objects that are referenced by the Processes or Business Objects being
executed.

The available Business Object run modes are listed below:

• Foreground - The object will never be permitted to have more than one active instance on a given Resource PC.
This mode will allow the Business Object to be run at the same time as background Business Objects.

If the existing session is set to foreground any subsequent sessions which are also set to foreground or exclusive
will be rejected until the original session has completed. Subsequent background sessions will be accepted

• Background - The object is designed to support multiple instances running concurrently on the same Resource PC.
This mode will allow the Business Object to run at the same time as foreground and background business objects.

If the existing session is set to background any subsequent sessions which are set to exclusive will be rejected until
the original session has completed. Subsequent background or foreground sessions will be accepted as long as
there is no more than 1 foreground session present.

• Exclusive - This object will never be permitted to have more than one active instance on a given Resource PC and
will not run at the same time as another Business Object.

If the existing session is set to exclusive any subsequent sessions will be rejected until the original session has
completed. Likewise, irrespective of the run mode of any existing sessions, any subsequent requests for an
exclusive session will be rejected until all previous sessions have been completed.

Consideration should also be given to any other sessions that may be generated on a given Runtime Resource. For example if a
mixture of Processes and Business Objects are exposed, or if the Runtime Resource is also used to process ad hoc or scheduled
work, this will result in additional sessions being required.

Commercial in Confidence Page 36 of 64

Licensing and Session Management Examples
The following examples include a number of scenarios that illustrate session management and licensing implications.

Scenario 1
Runtime Resource 1 is currently executing a scheduled process, Process A, in Foreground run mode. In quick succession it
receives 25 web service requests targeted at Process B (which also operates in Foreground run mode).

a. A current active session is present for the execution of Process A (Foreground)

b. Runtime Resource 1 attempts to create a session for the first web service request however as it is not possible to create a
Foreground session when one of the same type is ready present. The request is rejected with a message indicating that
the Runtime Resource is busy.

c. Runtime Resource 1 attempts to create a session for each of the subsequent web service requests. As these requests
have arrived prior to the original Foreground session request being completed, and the request being for Foreground
processing, these requests will also be rejected with a message indicating that the Runtime Resource is busy.

Total Sessions: 1

Rejected Requests: 25 (excluding rejections due to licensing capacity)

Scenario 2
Runtime Resource 1 is currently executing a scheduled process, Process A, in Foreground run mode. In quick succession
receives 25 web service requests targeted at Process C (which operates in Background run mode).

a. A current active session is present for the execution of Process A (Foreground)

b. Runtime Resource 1 attempts to create a session for the first web service request, the session is created successfully
assuming that there is sufficient licensing capacity.

c. Runtime Resource 1 attempts to create a session for each of the subsequent web service requests. Subject to sufficient
licensing capacity each of these sessions will be successfully created.

Total Sessions: 26

Rejected Requests: None (excluding rejections due to licensing capacity)

Commercial in Confidence Page 37 of 64

Scenario 3
Runtime Resource 1 is currently executing a scheduled process, Process D, in Exclusive run mode. In quick succession receives
25 web service requests targeted at Process C (which operates in Background run mode).

a. A current active session is present for the execution of Process D (Background)

b. Runtime Resource 1 attempts to create a session for the first web service request, however this is rejected as the existing
session is set to run in Exclusive mode.

c. Runtime Resource 1 attempts to create a session for each of the subsequent web service requests. These are all rejected
as the existing session is set to run in Exclusive mode.

Total Sessions: 1

Rejected Requests: 25 (excluding rejections due to licensing capacity)

Scenario 4
Runtime Resources (1, 2 & 3) are configured with two Business Objects (A & B).

Business Object A requires a Foreground run mode, whereas Business Object B requires an exclusive run mode.

In quick succession, Runtime Resources 1 and 2 receive 25 web service requests targeted at Business Object A, and Runtime
Resource 3 receives 10 requests targeted at Business Object A and 10 requests targeted at Business Object B. The requests
specify that auto-initialization should be used.

a. Runtime Resource 1 attempts to create and start a session. It succeeds because there isn’t already an active Exclusive run
mode session on this Runtime Resource and because there is licensing capacity. The single session processes all 25
requests for Business Object A (Foreground).

b. Runtime Resource 2 attempts to create and start a session. It succeeds because there isn’t already an active session,
irrespective of run mode, on this Runtime Resource and because there is licensing capacity. The single session processes
all 25 requests for Business Object B (Exclusive). Auto-initialisation allows the Business Objects in this scenario to have
any run mode.

c. Runtime Resource 3 attempts to create and start a session. It succeeds because there isn’t already an active session,
irrespective of run mode, on this Runtime Resource and because there is licensing capacity. The single session processes
10 requests for Business Object A (Foreground) followed by 10 requests for Business Object B (Exclusive).

Total Sessions: 3

Rejected Requests: None (excluding rejections due to licensing capacity)

In this example use of auto-initialization when calling the Business Object web services allows for a mixture of run modes
(including exclusive) to be concurrently received for processing by a single Runtime Resource.

Commercial in Confidence Page 38 of 64

Scenario 5
Consider a scenario whereby there are 3 Runtime Resources (1, 2 & 3) that are configured with two Processes (E & F). Process E
runs in a Background mode, whilst Process F requires an Exclusive run mode.

In quick succession, Runtime Resources 1 and 2 each receive 25 web service requests targeted at Process E, and Runtime
Resource 3 receives 10 requests targeted at Process E and 10 Requests targeted at Process F.

a. Runtime Resource 1 attempts to create and start a session for each of the 25 requests. It succeeds as long there isn’t
already an active Exclusive run mode session on this Runtime Resource and if there is licensing capacity.

b. Runtime Resource 2 attempts to create and start a session for each of the 25 requests. It succeeds as long there isn’t
already an active Exclusive run mode session on this Runtime Resource and if there is licensing capacity.

c. Runtime Resource 3 attempts to create and start a session for each of the 10 requests. It succeeds as long there isn’t
already an active Exclusive run mode session on this Runtime Resource and if there is licensing capacity.

d. Runtime Resource 3 attempts to create and start a session for the first of the 10 requests for Process F however this is
rejected because Runtime Resource 3 cannot allow an Exclusive run mode session due to there being other active
sessions already present.

Total Sessions: 60

Rejected Requests: 10 (excluding rejections due to licensing capacity)

Commercial in Confidence Page 39 of 64

Recommended Approach
Whilst there are potentially many approaches which may be suited to a range of requirements, the most common Blue Prism
web service interface design includes the following features:

• Expose only Blue Prism Business Object(s), which simply verify and the pass data into a specified work queue. Ideally
these Business Objects will be set to run in Background mode however scenarios featuring foreground and exclusive run
modes can potentially be supported with this configuration.
In some cases it may be appropriate to have a single object action with parameters that allow the caller to specify the data
and the target work queue.
Other scenarios may include exposing a Business Object with an action for each of the target work queues.

• Allocate a small number of dedicated Blue Prism Runtime Resources to receive the web service requests. The caller uses
auto-initialization in order to minimise the number of Blue Prism sessions that will be initiated and to cater for a mixture
of run modes to be used within a single session if required. Where multiple sessions are required on a single Runtime
Resources such as where it is used for other processing, the run modes will need to be configured such that they do not
conflict.

• Configure a Blue Prism Process to work the items in the Work Queue.
(This can be as comprehensive as required)

• The control of the subsequent processing of the work items is aligned to the other work queues managed by the Blue
Prism platform. (E.g. it is managed automatically using schedules, or manually by the Blue Prism controllers). This allows
the number of Runtime Resources dedicated to clearing down the work queue can be tailored to meet demand.

• The output of the process is handled by Blue Prism and can include a wide range of options. A non-exhaustive list of
options includes: updating a target system, updating a database, logging the result into a flat file, sending an email, calling a
third-party web service etc.

Commercial in Confidence Page 40 of 64

Example
The diagram presents a common configuration when exposing Blue Prism web services.

1. The web service request is received by the Runtime Resource PC. The request targets a Blue Prism Business Object and
contains information about the item that requires processing.

2. Based on the action called and the data passed, the information is verified and a work item is added to the appropriate
Blue Prism Work Queue.

3. The web service returns a response that indicates whether adding the item to work queue was successful.

4. Based on the automatic schedules, the Blue Prism Runtime Resources start a Process to query the work queue and
collaboratively work on each item in turn.
(Can also be triggered manually by a Blue Prism controller)

5. Where required as part of the Process execution, the Blue Prism Runtime Resources interact with various business
applications.

Advantages
The main advantages of the Blue Prism recommended approach are:

• The low-complexity of the Business Object actions allows the run mode to be set to background operation which enables
simultaneous requests to be received.

• Caters for high variance in demand of the web service whilst minimising the number of Blue Prism sessions that will be
required. This allows the licensing impact to be predicted and managed.

• Segregation of the logging of the work queue item from the subsequent processing allows for the capacity of the
processing to be scaled independently of the capacity to receive requests. Furthermore the asynchronous nature of the
subsequent processing allows for the number of Runtime Resources assigned to the work queue to be scaled in line with
demand and can leverage complex decisioning and comprehensive exception handling capabilities.

Commercial in Confidence Page 41 of 64

Encrypting Exposed Blue PrismWeb Services
Where there is a requirement to provide Blue Prism web service connectivity to systems which are outside of the trusted,
secure local network, it may be desirable for the communication to take place over HTTPS using Secure Socket Layers (SSL).
There are two common approaches for this:

• Configure Blue Prism Runtime Resource listeners to use certifcate-based encryption for incoming instructional
communication.

• Deploy a proxy server to implement SSL. This would inline between the external requestor and the Blue Prism Runtime
Resources.

Configuring Blue Prism Runtime Resources to use certificate-based encryp-
tion
For Blue Prism 5.0.18 and above, Runtime Resources can be configured to use a local certificate to apply certificate-based
encryption for all traffic received on the Resource listening port (default 8181).

This affects all instructional information received by the Runtime including instructions from Blue Prism Interactive Clients, Blue
Prism Server (scheduler) and Web Service queries. The URL when consuming web services hosted on a secured Blue Prism
Runtime Resource will use a HTTPS prefix (e.g. https://bprobot1:8181)

Further information is provided within the v6 Data Sheet – Securing Network Connectivity.

Encrypting Blue PrismWeb Services using a proxy
In order to achieve this configuration, one option
is to implement a proxy server as shown in the
diagram. Dependent on the proxy server that is
implemented, there may also be scope to
leverage additional features such as load
balancing which can distribute the
communications between the online available
Runtime Resources.

In this scenario the proxy would only be used to
marshal for external (non-Blue Prism) traffic.

https://bprobot1:8181/

Commercial in Confidence Page 42 of 64

Securing access to Blue PrismWeb Services
When accessing an Exposed Object or Process as a Web Service, user accounts are validated against the Blue Prism platform to
ensure that they have the appropriate permissions. By default, users require the ability to execute the process or object that has
been exposed as a Web Service.

Accessing the WSDL
Access to the WSDL is determined based on the permissions of the account used by the Runtime Resource to authenticate
against the environment. For example, if the WSDL is accessed via http(s)://robot001.mydomain.com:8181, the account used to
authenticate this Runtime against the network will require the appropriate permissions.

The Runtime Resource account requires the ability to see the Object or Process within the environment. Resources that were
started without explicitly authenticating against the environment (not recommended) assume the appropriate permissions
automatically.

In scenarios where the Runtime Resource uses an account that does not have the Runtime Resources role, the roles and access
rights of the account must provide the ability to view the relevant Object or Process. Therefore, if there is a requirement to
prevent specific Runtime Resource from displaying a given WSDL, the Runtime must authenticate on start-up using a custom
security role which does not provide the ability to view the Object or Process.

Executing restricted Objects or Processes
When executing an Object or Process, the user making the request is required to have the Execute as Web Service role on the
given Object or Process. For situations where the Object or Process resides within a restricted folder, the user requires the
appropriate permission on items within that folder.

When calling Web Services, the user only requires Execute as Web Service on the specific Object or Process - they do not need
any explicit permissions on the child items.

Commercial in Confidence Page 43 of 64

ConsumeWeb Services using Code Stage Based Business Objects
Some web services contain features that are not natively compatible with Blue Prism. In these instances code stages can be used
to build a custom web service wrapper to allow interpretation and use by Blue Prism.

This guide describes how to build a web service wrapper for such scenarios based on code stages and uses Microsoft Web
Service Integration technologies.

These technologies are mature and support features such as polymorphic-typed web service action parameters through use of
auto-generated code. It should be noted however that such auto-generated code is static and changes to the web service may
require re-work.

Additional steps are included within the example to provide instructions on how the code stage can be used to pass credentials in
the SOAP header for web services which utilize WS-Security authentication, implemented by WSE 3.0. The alternative or
additional steps within the example are marked as WS-Security Implementation.

Code stages can be further customized to control additional custom features such as toggling the MustUnderstand attribute, or
defining if the WS-Addressing header should be included however this is outside the scope of this example

Pre-requisites
This guide is intended for technical users with the following skills:

• A basic working knowledge of web services. In particular it will be useful to be familiar with WSDL documents and if
relevant, WS-Security.

• Good knowledge of the Blue Prism product including how to create objects, actions and stages within those objects.

• Good understanding of writing applications in Visual Studio .NET using either C# or Visual Basic.

The following tools will be required:

• A working installation of Blue Prism with appropriate user account privileges to create, modify, publish and run processes.

• Visual Studio 2005 or above.

Commercial in Confidence Page 44 of 64

Steps
The following steps are addressed in this section:

1. Generate a new Business Object that will be configured to provide the interface between Blue Prism and the web service
and select the preferred coding language.

2. Use the appropriate tool to auto-generate the base code for interpreting the WSDL.

If following the WS-Security Implementation example, it is necessary to install WSE on each of the developer Interactive
Clients and each Runtime Resource PC

3. Set up a Blue Prism Code Stage with the appropriate elements of the generated code, and the necessary reference
libraries.

4. Define the web service URL as an environment variable for ease of updating it in the future.

5. Generate a web service wrapper to transform the inputs and outputs between Blue Prism and the web service.

Generate a new Business Object
1. Create a new business object within Blue Prism. Give it a name and description.

2. Once the object has been created click on the tab which says Initialise, and then double click on the Page Info stage.

This is where the Global Code and Code Options tabs are located.

Commercial in Confidence Page 45 of 64

3. Click Code Options and select the preferred language.

Commercial in Confidence Page 46 of 64

Auto-Generate Code using wsdl.exe or wsewsdl3.exe
Typically the Windows SDK is installed as part of the installation of Visual Studio and this contains the wsdl.exe tool which can be
used to create a wrapper class around the web service.

alternatively when WSE 3.0 is installed, the alternative wsewsdl3.exe tool can be used.
This should be used when consuming a web service which implements WS-Security and requires credentials to be passed in the
SOAP header.

The wrapper class that is generated is then used within the Global Code of the Business Object.

1. Launch the Visual Studio Command Prompt.

Typically found from the relevant Microsoft Visual Studio folder within the Start Menu. For example, Microsoft Visual
Studio > Visual Studio Tools > Visual Studio Command Prompt.

2. Use either the wsdl.exe or wsewsdl.exe tool via the command prompt against the web service WSDL. When following the
WS-Security additional example the wsewsdl3.exe tool should be used.

l wsdl.exe - Suitable for web services which do no implement WS-Security and do not require credentials to be
passed in the SOAP header

wsdl.exe /language:[VB|CS] /out:[File Location] [Address of WSDL]

l VB.NET

wsdl.exe /language:VB /out:“%TEMP%” http://example.com/wsService?wsdl

l C#

wsdl.exe /language:CS /out:“%TEMP%” http://example.com/wsService?wsdl

l wsewsdl3.exe - Suitable for web services which implement WS-Security and require credentials to be passed in
the SOAP header

wsewsdl3.exe /language:[VB|CS] /type:webClient /out:[File Location] [Address
of WSDL]

l VB.NET

Wsewsdl3.exe /language:VB /type:webClient

/out:“%TEMP%” http://example.com/wsService?wsdl

l C#

Wsewsdl3.exe /language:CS /type:webClient

/out:“%TEMP%” http://example.com/wsService?wsdl

3. The output of the tool should look similar to the message below and indicates the specific location of the output file that
has been generated: Microsoft (R) Web Services Description Language Utility.

[Microsoft (R) .NET Framework, Version 2.0.50727.42]

Copyright (C) Microsoft Corporation. All rights reserved.

Writing file 'C:\Temp\Service1.vb'.

4. Navigate to the writing file location and open it using a suitable editor.

http://example.com/wsService?wsdl

Commercial in Confidence Page 47 of 64

Copy the relevant code to the Business Object
The code generated by the wsdl.exe tool contains a header that must be removed prior to the remainder of the code being
copied to the previously created Business Object. The header that can be discarded is similar to below.

VB.NET
'--
' <auto-generated>
' This code was generated by a tool.
' Runtime Version:2.0.50727.5466
'
' Changes to this file may cause incorrect behavior and will be lost if
' the code is regenerated.
' </auto-generated>
'--

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization
'
'This source code was auto-generated by wsdl, Version=2.0.50727.42.
'

'''<remarks/>

Manually copy the remaining code into the Global Code tab of the Business Object. Do not press the Check Code button at this
time and make a note of the name of the class - in the code example below it is Service1.

Commercial in Confidence Page 48 of 64

C#
//--
// <auto-generated>
// This code was generated by a tool.
// Runtime Version:2.0.50727.5466
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </auto-generated>
//--

using System.ComponentModel;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Serialization;

//
//This source code was auto-generated by wsdl, Version=2.0.50727.42.
//

Manually copy the remaining code into the Global Code tab of the Business Object. Do not press the Check Code button at this
time and make a note of the name of the class - in the code example below it is Service1.

Commercial in Confidence Page 49 of 64

Add the necessary External Library References
1. Click into the Code Options tab to add the following External References and Namespace Imports:

VB.NET

External References

System.Web.Services.dll

Namespace Imports

System.ComponentModel

System.Diagnostics

System.Web.Services

System.Web.Services.Protocols

System.Xml.Serialization

C#

External References

System.dll

System.Web.Services.dll

Namespace Imports

System.ComponentModel

System.Diagnostics

System.Web.Services

System.Web.Services.Protocols

System.Xml.Serialization

If following the WS-Security the following additional Code Options are
required:

External References

Microsoft.Web.Services3.dll

Namespace Imports

Microsoft.Web.Services3.Design

Microsoft.Web.Services3.Messaging

Microsoft.Web.Services3

Microsoft.Web.Services3.Security.Tokens

Commercial in Confidence Page 50 of 64

2. Select the Global Code tab and click Check Code. If any errors are reported, these must be resolved before continuing.

Setup the Global Code to use an Environment Variable for the URL
To allow future modification of the web service URL, the constructor of the Service1 class is going to be modified to use the value
specified in a Blue Prism Environment Variable.

1. Within the Global Code of the Business Object, at the top of the existing code, add a member variable:

VB.NET

Private mWebService As Service1

C#

private Service1 mWebService;

2. Locate the Service1 class constructor within the code and add a URL string parameter. Typically located by searching for:

VB.NET

Public Sub New ()

The modified constructor should resemble the following:

Public Sub New(ByVal url As String)

MyBase.New()

Me.Url = url

End Sub

C#

public Service1()

The modified constructor should resemble the following:

public Service1(string url) : base()

{

this.Url = url;

}

3. Select Process Area > Environment Variables and create a new environment variable using the Blue Prism System
Manager.

4. Click the add variable link and give the environment variable a name, a type of text, and the value of the URL as it
appeared in the code originally.

5. Within the initialize page of the Business Object create a data item that uses the newly created environment variable. The
name of the data item must exactly match the name of the environment variable.

6. Choose environment variable from the exposure type drop down within the data item properties.

7. Within the Initialise page, add a code stage with a single input called 'Url' of type text, which will be populated using a Blue
Prism environment variable.

The code to be added to this code stage is:

VB.NET

mWebService = New Service1(Url)

C#

mWebService = new Service1(Url);

The code stage should be linked to the start and end stages of the initialize page.

Commercial in Confidence Page 51 of 64

Generate a Wrapper Code Stage
In order to allow Blue Prism processes to use the web service a code stage wrapper is required. This will involve creating a new
Action within the Business Object.

Writing wrapper code stages requires bespoke implementation and is dependent on the action of the web service that needs to
be invoked.
This section provides an overview of what needs to be achieved, but the examples will need to be modified to meet the specific
requirements of the web service action.

The actions required to generate the wrapper code stage include:

1. Create a new Action page within the Business Object

2. Define the appropriate input and output parameters for the object Action based on those required for the web service
action.

Blue Prism presents data types to code stages as native .NET data types. For example:

l Text is presented to the code stage as a System.String

l Number is presented to the code stage as System.Decimal.

l A Collection datatype is presented to the code stage as a System.Data.DataTable. A single row collection can be
used to represent name value pairs and this could then be mapped to the member properties of a class. A
collection with a single field can be used to represent array or list data. A nested collection can be used to
represent hierarchical or tree like data structures.

3. Add a code stage to the action and link it to the start and end stages. Input and Output parameters for the code stage
should then be set mirroring those set as inputs and outputs of the action.

Within the code stage itself as a basic outline it is expected that the code does at least the following:

a. Convert input parameters to web service action parameters

b. Call the web service action

c. Convert the result of the web service call to output parameters.

Examples
This section provides an example of the required code for both VB.NET and C#. The code is not expected to compile without
being modified.

The following should be noted about the this example:

• That a loop has been implemented to process the incoming collection to ensure that all rows are accounted for. It is
recommended to read collections in this way even if it is expect that the collection will contain a single row.

• The columns specified for the output data table must match the field names defined in the collection within the Blue
Prism object.

The code encapsulated with purple comments is only required when following the WS-Security Implementation example.

Commercial in Confidence Page 52 of 64

VB.NET
Dim q As New QueryByName() 'Replace QueryByName with the correct class name
'Example 1 Collection input
Dim inputDataTable As System.Data.DataTable = input1
For Each inRow As System.Data.DataRow In inputDataTable.Rows

q.Value = inRow("field1")
Next
'Example 2 Number Input
Dim inputNumber As Integer = input2
q.NumberValue = inputNumber
'Example 3 Text Input
Dim inputText As String = input3
q.TextValue = inputNumber
'...

'Example of Invoking the web service action
Dim r As BaseResponse

'Content required for WS-Security Implement: Start
Dim token As New UsernameToken("webSvcUser", "Pa55word", PasswordOption.SendPlainText)
mWebService.SetClientCredential(Of UsernameToken)(token)
Dim webServiceClientPolicy As New Policy()
webServiceClientPolicy.Assertions.Add(New UsernameOverTransportAssertion())
mWebService.SetPolicy(webServiceClientPolicy)
'Content required for WS-Security Implement: END

r = mWebService.retrieveValuationsBy(q)

'Example of converting the output of the web
'service action into a datatable for storing
'in the output collection
Dim outputDataTable As New System.Data.DataTable
outputDataTable.Columns.Add("field1")
Dim outRow As System.Data.DataRow = outputDataTable.Rows.Add()
outRow("field1") = r.Value

output1 = outputDataTable
'...

Commercial in Confidence Page 53 of 64

C#
QueryByName q = new QueryByName(); //Replace QueryByName with correct class name

//Example 1 Collection input
System.Data.DataTable inputDataTable = input1;
foreach (System.Data.DataRow inRow in inputDataTable.Rows) {
q.Value = inRow["field1"];
}

//Example 2 Number Input
int inputNumber = input2;
q.NumberValue = inputNumber;

//Example 3 Text Input
string inputText = input3;
q.TextValue = inputNumber;
//...

//Example of Invoking the web service action
BaseResponse r = default(BaseResponse);
//Content required for WS-Security Implement: Start
UsernameToken token = new UsernameToken("webSvcUser", "Pa55word",
PasswordOption.SendPlainText);
mWebService.SetClientCredential<UsernameToken>(token);
Policy webServiceClientPolicy = new Policy();
webServiceClientPolicy.Assertions.Add(new UsernameOverTransportAssertion());
mWebService.SetPolicy(webServiceClientPolicy);
//Content required for WS-Security Implement: END
r = mWebService.retrieveValuationsBy(q);

//Example of converting the output of the web
//service action into a datatable for storing
//in the output collection
System.Data.DataTable outputDataTable = new System.Data.DataTable();
outputDataTable.Columns.Add("field1");
System.Data.DataRow outRow = outputDataTable.Rows.Add();
outRow["field1"] = r.Value;
output1 = outputDataTable;
//...

Commercial in Confidence Page 54 of 64

Consume an Exposed Blue PrismWeb Service using Visual Studio
This guide illustrates how to build an independent web service client using Visual Studio which can consume a web service that
has been exposed by Blue Prism.

It is a full working example which includes use of a provided example components.

Pre-requisites
This guide is intended for technical users with the following skills:

• A basic working knowledge of web services. In particular it will be useful to be familiar with WSDL documents.

• Good knowledge of the Blue Prism product including how to expose a Business Objects and/or Process as web services.

• Good understanding of working with Visual Studio using either C# or Visual Basic .NET. This example uses VB .NET.

The following tools will be required:

• A working installation of Blue Prism with appropriate user account privileges to create, modify, publish and run processes.

• The sample Blue Prism Business Object and Process.

• Visual Studio 2005 or above.

Steps
The following steps are addressed in this section:

1. Download and Import the Sample Business Object and Process

2. Exposing the Business Object and Process as web services

3. Create a new Visual Studio Console Application Project with the appropriate library references.

4. Add a web reference linking to the exposed web service.

5. Produce simple code to:

a. Interact with a Business Object based web service (using manual and auto-initialization).

b. Interact with a Process based web service.

c. Trigger the above interactions when the application runs.

Commercial in Confidence Page 55 of 64

Download and Import the Sample Business Object and Process
A resource zip file is available via the user portal which contains:

• A sample Blue Prism Business Object

• A sample Blue Prism Process

• Example Visual Studio Project (VB.NET) of a Web Service Client

Search the Documents section of the customer portal for Resources - Consuming an Exposed Blue Prism Web Service.

1. Launch Blue Prism and Log in

2. From the File menu, use the Import wizard to individually import the sample Business Object and Process.

• BPA Object – NumericOperations.xml

• BPA Process – FavouriteFruitLookup.xml

Commercial in Confidence Page 56 of 64

Expose the Sample Business Object and Process as Web Services
1. Use the wizards located accessed via the following locations to expose the Business Object and Process as web services.

For the purposes of this example names of the respective exposed web services should match those stated below:

Wizard Location Web Service Name

Business Object System Manager -> Business Objects -> Process Exposure NumericOperations

Process System Manager -> Processes -> Process Exposure FavouriteFruitLookup

Full walkthroughs on how to: Expose a Business Object as a Web Service; and Expose a Process as a Web Service are
available.

2. Retrieve the URL of the WSDL for the respective web services for use later on by browsing to the following URL:

http://[machine name]:[port]/ws/

Where [machine name] is the name of one of the Blue Prism runtime resources, and [port] is the defined port that Blue
Prism is configured for. For example, http://resource001:8181/ws/.

Where the Blue Prism Runtime Resource has been configured with certificate-based encryption, the prefix will be https.

http://resource001:8181/ws/

Commercial in Confidence Page 57 of 64

Create a new console application with Visual Studio
1. Create a new Visual Basic Console Application, named BP Web Service Client Sample.

2. Right-click the project name within the solution explorer and select Add Reference to add the required Library
References.

3. Select System.Web.Services and click OK.

Commercial in Confidence Page 58 of 64

Add Web References to each WSDL
1. Right-click the project name within the solution explorer and select Add Web Reference. If using newer versions of Visual

Studio, select Add Service Reference, click Advanced then click Add Web Reference.

2. Type the URL of the WSDL for the FavouriteFruitLookup.

Visual Studio will then examine the WSDL document.

3. Set the name of the Web Reference to be FavouriteFruitLookup.

4. Repeat the above steps for the NumericOperations WSDL and name it NumericOperations.

Commercial in Confidence Page 59 of 64

Example Code: Interact with a Business Object based Web Service
Business Objects can comprise of many individual actions and each of these is made available via the exposed web service. For
example the Business Object NumericOperations has two actions: Add Numbers and Subtract Numbers.

Business Object based web services must be initialized before use. There are two methods available:

• Manual Initialisation - Provides full control of the life cycle of the Business Object. Achieved by using the Intialise action to
receive a Session ID which is then used to populate the bpInstance input parameter on subsequent actions.

If using manual initialization a session will be displayed within Control Room each time the Business Object is initialized
where-as with auto-initialization, a single session will be used for all actions taken against a given web service.

• Auto-Initialisation - Reduces the number of steps required as part of calling a Business Object action as Blue Prism handles
the initialization of the Business Object on behalf of the user. Achieved by setting the parameter bpInstance to have a
value of “auto”.

With auto-initialization, any global variables defined within the Blue Prism Business Object will remain initialized across
each relevant web service request.

Irrespective of the choice of initialization method, the steps required are as follows.

1. Create a sub procedure named TestNumericWebService

Private Sub TestNumericWebService()

End Sub

2. Insert the following lines to display information in the console when the application runs and to create a new instance of
the proxy class for interacting with the web service.

Console.WriteLine("Numeric Web Service Test")

Dim NOS As New NumericOperations.NumericOperationsService

3. Add the following line which handles the authentication with Blue Prism.

NOS.Credentials = New System.Net.NetworkCredential("admin", "admin")

The username and password must be valid for Blue Prism credentials for a user with permissions log in and run a Process
from Control Room. The user will also require access to run a Business Object.

4. If using manual-initialization, append the following line which carries out the initialization and returns the Session ID. This
Session ID will be supplied when any of the Business Object action methods are requested to allow Blue Prism to
distinguish between multiple concurrent running instances on the same Business Object.

Dim SessionID As String = NOS.Initialise()

Console.WriteLine("Initialised")

If using auto-initialization, instead append the following line which, when used, will tell Blue Prism to handle the
initialization automatically.

Dim SessionID As String = “auto” 'set string value as auto

5. Include the following code which calls the two different actions and outputs the results. Note that each pass either the
Session ID returned by the initialize action, or the text “auto” if using auto-initialization.

'Call the action method “Add Numbers”

Dim Result1 As Decimal = NOS.AddNumbers(SessionID, 3, 5)

Console.WriteLine("Added 3 and 5 to get " & Result1.ToString)

'Call the action method “Subtract Numbers”

Dim Result2 As Decimal = NOS.SubtractNumbers(SessionID, 3, 5)

Console.WriteLine("Subtracted 5 from 3 to get " & Result2.ToString)

AthibanMahamati
Highlight

Commercial in Confidence Page 60 of 64

6. Finally, if using manual-initialization it is necessary to carry out a clean-up task of closing the session. This allows Blue Prism
to close the session and dispose of the associated resources.

Console.WriteLine("Cleaning up ...")

NOS.CleanUp(SessionID)

If using auto-initialization no clean-up actions are required.

The complete procedure should appear as follows:

Manual Initialisation

Private Sub TestNumericWebService()
Console.WriteLine("Numeric Web Service Test")
Dim NOS As New NumericOperations.NumericOperationsService

NOS.Credentials = New System.Net.NetworkCredential("admin", "admin")
Dim SessionID As String = NOS.Initialise()
Console.WriteLine("Initialised")
'Call the action method “Add Numbers”
Dim Result1 As Decimal = NOS.AddNumbers(SessionID, 3, 5)
Console.WriteLine("Added 3 and 5 to get " & Result1.ToString)
'Call the action method “Subtract Numbers”
Dim Result2 As Decimal = NOS.SubtractNumbers(SessionID, 3, 5)
Console.WriteLine("Subtracted 5 from 3 to get " & Result2.ToString)

Console.WriteLine("Cleaning up ...")
NOS.CleanUp(SessionID)
End Sub

Auto-Initialisation

Private Sub TestNumericWebService()
Console.WriteLine("Numeric Web Service Test")
Dim NOS As New NumericOperations.NumericOperationsService

NOS.Credentials = New System.Net.NetworkCredential("admin", "admin")
Dim SessionID As String = “auto”
‘Console.WriteLine("Initialised")
'Call the action method “Add Numbers”
Dim Result1 As Decimal = NOS.AddNumbers(SessionID, 3, 5)
Console.WriteLine("Added 3 and 5 to get " & Result1.ToString)
'Call the action method “Subtract Numbers”
Dim Result2 As Decimal = NOS.SubtractNumbers(SessionID, 3, 5)
Console.WriteLine("Subtracted 5 from 3 to get " & Result2.ToString)

End Sub

Commercial in Confidence Page 61 of 64

Example Code: Interact with a Process based Web Service
Unlike Business Objects, Processes run once for each instance, only have one entry point and there are no explicit initialization or
clean-up actions required.

1. Create a sub procedure named TestFruitLookupWebService()

Private Sub TestFruitLookupWebService()

End Sub

2. Use the following lines to display information in the console when the application runs and to create a new instance of the
proxy class for interacting with the web service.

Console.WriteLine("FruitLookup Web Service Test")

Dim FFL As New FavouriteFruitLookup.FavouriteFruitLookupService

3. Add the following line which handles the authentication with Blue Prism.

FFL.Credentials = New System.Net.NetworkCredential("admin", "admin")

The username and password must be valid for Blue Prism credentials for a user with permissions log in and run a Process
from Control Room.

4. Add code which defines a string array of names and subsequently loops through each name and for each, queries the
web service to find out what their favourite fruit is.

For Each Person As String In New String() _

{"Bashful", "Doc", "Dopey", "Grumpy", "Happy", "Sleepy", "Sneezy"}

Dim Fruit As String = FFL.FavouriteFruitLookup(Person)

Console.WriteLine(String.Format(“{0}’s favourite fruit is {1}”,Person,Fruit))

Next

The complete procedure should appear as follows:

Private Sub TestFruitLookupWebService()
Console.WriteLine("FruitLookup Web Service Test")
Dim FFL As New FavouriteFruitLookup.FavouriteFruitLookupService
FFL.Credentials = New System.Net.NetworkCredential("admin", "admin")
For Each Person As String In New String() _

{"Bashful", "Doc", "Dopey", "Grumpy", "Happy", "Sleepy", "Sneezy"}
Dim Fruit As String = FFL.FavouriteFruitLookup(Person)
Console.WriteLine(String.Format(“{0}’s favourite fruit is {1}”,Person,Fruit))
Next

Console.WriteLine("End of FruitLookup Test")
End Sub

Commercial in Confidence Page 62 of 64

Example Code: Trigger the Interactions when the application is run
This example modifies the main procedure within the console application to trigger the above interactions with the Business
Object based web service and the Process Based web service.

1. Modify the main procedure to call the sub procedures.

Sub Main()

TestNumericWebService()

TestFruitLookupWebService()

Console.WriteLine("End of Program. Press any key to exit.")

Console.ReadKey()

End Sub

2. Save the project in Visual Studio and run it using the debugging tool.

3. The console application output should be similar to the screenshot below:

Commercial in Confidence Page 63 of 64

Frequently Asked Questions
What version of Blue Prism first contained wizards for exposing Business Objects and Pro-
cesses as web services?
The wizard functionality for exposing Blue Prism Business Objects and Blue Prism Processes as web services was first introduced
in version v4.2.35.

What is the timeout value for web services consumed by Blue Prism?
Prior to version 3.0.84, a third-party web service was configured to have a hard-coded timeout value of 100 seconds. Subsequent
versions of Blue Prism allow this default to be configured for each web service.

Can Blue Prism handle binary web service data?
Introduced in version 3.0.76, Blue Prism supports binary data as inputs and outputs for both exposed and consumed web
services. This provides the ability to pass files (documents, images, pictures etc.) as input or output parameters.

Can Blue Prism consume third-party web services presented over HTTPs?
Yes, however it is important that the Blue Prism runtime resources that will use such web services are configured to trust the
certificate that is used to secure the web service. This may include ensuring a public certification authority issues the certificate
or ensuring that the certificates are added to the appropriate zones on each runtime resource.

Can Blue Prism consume RESTful web services?
Support is primarily provided for a range of SOAP Web Services, however support for REST web services is provided for
developers with appropriate programming experience through use of a series of example VBOs: REST, HTTP, JSON and OAuth.

Can Blue Prism handle structured web service data?
Introduced in version 3.5.33, Blue Prism supports nested collections. This allows Blue Prism to send and receive structured data
when exposing or consuming web services.

What authentication is needed to access Blue Prism web services?
Blue Prism web services are secured using HTTP authentication. It is recommended that a Blue Prism user account is configured
for each third-party provider that will be consuming exposed Blue Prism web services. The credentials for these users can then
be used as part of the HTTP header authentication process.

What is the limit to the size of web service request that Blue Prism can make?
Blue Prism does not have a limit to the size of request that it can make. It should be noted however that web service servers
typically impose a limit (commonly 4mb).

Is support provided for consuming WSDLs that include recursive definitions?
Recursive definitions within WSDLs are not supported by Blue Prism. An example snippet of a WSDL that includes a recursive
definition for DataCategory is below:

<complexType name="DataCategory">
<sequence>

<element name="childCategories" type="tns:DataCategory" minOccurs="0"
maxOccurs="unbounded"/>

<element name="label" type="xsd:string"/>
<element name="name" type="xsd:string"/>

</sequence>
</complexType>

Commercial in Confidence Page 64 of 64

Where can I get further support?
If further assistance is required whilst following this document please contact your Blue Prism Account Manager or Technical
Support (support@blueprism.com).

mailto:support@blueprism.com

	Trademarks and copyrights
	Contents
	Introduction
	Audience
	Executive Summary

	Exposing Web Services
	Providing Access to the Web Services
	Defining Web Service Parameters
	Web Service Encoding Types
	Expose a Business Object as a Web Service
	Expose a Process as a Web Service

	Consuming Third-Party Web Services
	Accessing Third-Party Web Services
	Web Service Parameters
	Passing Credentials in the SOAP Header
	Set up a Third-Party Web Service in Blue Prism
	Use a Third-Party Web Service in Blue Prism

	Design Considerations for a Blue Prism Web Service Interface
	Session Management
	Session Management Design

	Licensing and Session Management Examples
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Recommended Approach
	Example
	Advantages

	Encrypting Exposed Blue Prism Web Services
	Configuring Blue Prism Runtime Resources to use certificate-based encryption
	Encrypting Blue Prism Web Services using a proxy

	Securing access to Blue Prism Web Services
	Accessing the WSDL
	Executing restricted Objects or Processes

	Consume Web Services using Code Stage Based Business Objects
	Pre-requisites
	Steps
	Generate a new Business Object
	Auto-Generate Code using wsdl.exe or wsewsdl3.exe
	Copy the relevant code to the Business Object
	Add the necessary External Library References
	Generate a Wrapper Code Stage

	Consume an Exposed Blue Prism Web Service using Visual Studio
	Pre-requisites
	Steps
	Download and Import the Sample Business Object and Process
	Create a new console application with Visual Studio
	Add Web References to each WSDL
	Example Code: Interact with a Business Object based Web Service
	Example Code: Interact with a Process based Web Service
	Example Code: Trigger the Interactions when the application is run

	Frequently Asked Questions

