

BluePrism Auto Deployment
Cookbook

BP-GIT- Jenkins

By Ashish Easow

In the past few years, I have been involved in several ROM Assessments for Customers.

In many cases, I have observed that most of the Release management activities are done manually either by the
support team or with the developer’s assistance. This kind of deployment leaves a loophole which is a red flag
during audits with the possibility of unwanted problems later for large production changes like upgrades.

This got me thinking to my old SOA deployment days where we corrected this problem with Jenkins Auto
deployment using GIT as the code repository. We also had a pipeline implemented for approvals to higher
environments. Recalling that, I worked on a demo for a similar implementation for Blue Prism.

Background
The guide tries to give a simplistic view of the integration required for implementation of CI CD tools – GIT and
Jenkins with Blue Prism. A similar approach can be used with other code repositories and deployment automation
tools. Blue Prism does not recommend or support any tool and it is up to the implementor to choose the specific
tools as per their requirements. This guide is an attempt to provide more visibility in the technical aspects of the
set up required for these tools.

Software information

Software List and links

Term Link

Blue
Prism

Robotic Process Automation tool - https://portal.blueprism.com/products/current (v6.6)

GIT Source code repository.

For this guide a public repo was created at:

https://github.com/login

Organizations can choose to create their own repositories in house. The scope of this guide is to work
with an existing repository.

Repo used in this guide –

https://github.com/*****/**********.git (Redacted for public circulation)

Jenkins Automation Server used for deployment.

Can be downloaded at:

https://jenkins.io/download/

User needs to install an automation server after downloading the software. For this guide the
automation server was installed and configured to run as a service (default config).

The Automation server url for the demo described in the guide is:

http://localhost:8080/

The url for the automation job for Blue Prism in the guide is:

http://localhost:8080/job/Bp%20Demo/

https://portal.blueprism.com/products/current
https://github.com/login
https://github.com/*****/**********.git
https://jenkins.io/download/
http://localhost:8080/
http://localhost:8080/job/Bp%20Demo/

Pre-requisites

GIT Repo
Prior to starting this process the below steps need to be configured for GIT repository set up

• Set up a public or private git repository by using the Git location provided in the softwares required table
above.

• GIT Repo needs to be accessible by the GIT repo url in the system where Jenkins server is planned to be set
up.

• GIT repo needs to be accessible for both check-out and check-in of Blue Prism process artifacts.

Jenkins
User will need to set up Jenkins server on a windows machine:

• Set up a Jenkins server by downloading and running an install, provided in the software required links table
above

• Configure the Jenkins server service in services.msc, to run under an appropriate windows account
(optional if everything works without this).

• Jenkins Server should be accessible at the url configured. Default url provided in the Software links table
above.

Blue Prism
User will need to install Blue Prism in Jenkins Server machine.

• The install of Blue Prism present in the system where Jenkins server is installed, will be called Jenkins BP.

• For the purpose of this guide the lower environment is called Dev BP, Upper environment is UAT BP.

• Jenkins BP should have UAT BP as a connection in its configuration file.

• The user should have access to create releases/export artefacts from Dev.

• The user should have access to deploy artefacts to UAT.

Code Repository Steps

• For this demo, create a folder GIT in C: . This folder will be used to upload any code to GIT from DEV BP.

• Open Git bash app (search in programs).

• Navigate to C:\GIT in Git Bash by running the cd command.

• Run command: git clone https://github.com/****/**********.git

The command creates a clone of the remote GIT repo, when the command is run, you can see the repo
getting downloaded. (should be empty at this point)

https://github.com/****/**********.git

• Navigate to blueprism folder in Git Bash by running the cd command.

• Create the required folder structure for the code repo in windows, in this case we have created release 1,
inside release 1, we have 1 folder for releases, 1 folder for objects, 1 folder for processes and so on.

• In release 1/objects, create a blank bat file objectdeploy.bat. We will be adding the scripts to this bat file
for deployment. (ignore the BPA Object – Test.xml file)

• Each folder can have its own bat file for deployment which can be called in a sequence from command line
textbox or indvidually from Jenkins. So we have in objects folder objectdeploy.bat, in process folder
processdeploy.bat and so on. For the purpose of this demo, we will be calling each folder’s *deploy.bat
files from the jenkins.

• Sample objectDeploy.bat commands (processDeploy.bat works in a similar way):

"C:\Program Files\Blue Prism Limited\Blue Prism Automate\AutomateC.exe" /import "BPA Object -
Test.xml" /overwrite /user %1 %2 /dbconname %3

• Sample releasedeploy.bat commands:

"C:\Program Files\Blue Prism Limited\Blue Prism Automate\AutomateC.exe" /importrelease
TestGit.bprelease /overwrite /user %1 %2 /dbconname %3

• User can have a single/multiple config file(s) to keep all the deployable artefacts. This point is not
considered as part of this guide and is left upto the user to implement.

Jenkins Steps

• Open Jenkins using the url localhost:8080 (or your own Jenkins url) and create a new project, by clicking on
new item.

• Give a name to the project (Bp Demo in this case), and Select Freestyle Project and Click on Ok.

• Below screen should open up after clicking on Ok.

• Use the below configuration for the Demo in this guide, or add your own config as required.

Git Hub Project – Checked, value - https://github.com/****/********.git

This Project is Parameterised – Checked

Add Parameters –

ReleaseNumber, Value- release 1 (or what the user provides for the build)

Username, Value- admin (or what the user provides for the build)

Password, Value- **** (or what the user provides for the build)

Environment, Value- choices DEV,UAT,PROD (or what the user provides for the build)

https://github.com/****/********.git

Source Code management – GIT Selected

Repository url populated, Value- https://github.com/****/*********.git (or what the user
provides for the build)

Credentials- None (or what the user provides for the build)

Branch to build- */master (or what the user provides for the build)

Additional Behaviours- Clean before checkout

Build Environment –

Delete workspace Before build starts selected

Add timestamps to the console output selected

Build -

(1) Execute windows batch command -

cd %ReleaseNumber%

cd objects

objectdeploy.bat %Username% %Password% %Environment%

(2) Execute windows batch command -

cd %ReleaseNumber%

cd processes

processdeploy.bat %Username% %Password% %Environment%

(3) Execute windows batch command -

cd %ReleaseNumber%

cd releases

releasedeploy.bat %Username% %Password% %Environment%

(user can also define custom scripts as required, or chain multiple build commands as done above).

• Click on Save button at bottom after all configuration changes are done.

https://github.com/****/*********.git

• Run Services.msc from windows and configure the Jenkins service to run from a specified user account
under which BP is installed.

Deployment Steps

• Add runtime deployment files to GIT

GIT.zip

Above is the GIT directory with all the files, it contains the required folder structure as well as the indvidual
bat files paramterised for Jenkins deployment. The choice to add objects, process and release artefacts to a
list file is left to the user. For the purpose of this guide each artefact file name is present in the bat files.

• As per the directory structure, unzip and overwrite the files in the local GIT repo created.

• Open GIT bash. And type the below commands:

$ cd /C/GIT/blueprism

$ git add -A
$ git commit
Type comment -> esc -> wq!

$ git push

• Once the push command is issued, you should be able to see something similar to the creen below:

• If you refresh your GIT repository online, you should be able to see all the files added in the GIT GUI:

• Create a connection in Jenkins BP install, which points to DEV/UAT/PROD and the connection name should
match the choice which has been provided in the Job parameters for Jenkins above. (Environment, Value-
choices DEV,UAT,PROD or what the user provides for the build)

Job Creation and Tracking

• For creating a runtime Job, log into Jenkins, click on BP Demo (the project which has been configured). And
click on Build with parameters option on the left.

• Override any parameters required and click on build:

• If you refresh the page, you should be able to see your job getting executed.

• Click on the build number and console output on the next page shown:

• The console output gives the status of your current build. Attached is the output of the console output
obtained on following this guide.

console.txt

• Any job run can be viewed and tracked to completion this way and jenkins provides a centralised
deployment automation capability for this purpose.

Conclusion and Additional configuration

The user can add more variations to the build process, by adding more parameters, making the list of deployment
artefacts configurable and even making the entire process of extracting the release from UAT environment,
committing in GIT and deploying to production automated. Jenkins can also be integrated with other SCM tools and
tests can be run (Junit, Selenium, Maven) and reports aggregated. There is considerable collateral present online
for all these features for Jenkins integration. I have previously created a pipeline for user approvals for higher
environments, it works great.

Users are encouraged to explore.

Today spent in worrying about travel plans for next month,

Your friendly experimental Release Manager,

Ashish Easow

